ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-19
    Description: In this paper, the circulations driven by deep heating and shallow heating are investigated through analytically solving a set of linear equations and examining circulations simulated by a dry primitive equation model. Special emphasis is placed on the low-level mass (moisture) convergence associated with the forced circulation and the maintenance of the shallow and deep heat sources. It is found that the forced circulation driven by shallow heating is more likely to be trapped horizontally near the heating area but relatively extended in the vertical. As a consequence, diabatic heating can not balance adiabatic cooling due to upward motion. At the levels slightly above the top of the heating, a negative vertical gradient of temperature perturbation appears. For the atmosphere driven by deep heating, however, the temperature perturbation cannot accumulate because the heating signals propagate away very fast, allowing an approximate equilibrium between the convective diabatic heating and adiabatic cooling due to upward motion. The converged moisture associated with circulation driven by shallow heating exceeds the amount needed to maintain the heat source. However, the circulation driven by deep heating does not feed back effectively to the moisture convergence, and thus can not be self-sustaining.
    Description: Center for Ocean-Land-Atmosphere Studies - Calverton
    Description: Published
    Keywords: Atmospheric circulation
    Repository Name: AquaDocs
    Type: Journal Contribution , Refereed , Article
    Format: 637515 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...