ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Stability and Control  (13)
  • 1950-1954  (13)
  • 1952  (6)
  • 1950  (7)
  • 1
    Publication Date: 2019-07-11
    Description: The static longitudinal stability characteristics of a 0.15-scale model of the Hermes A-lE2 missile have been determined in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.98, corresponding to Reynolds numbers, based on body length, of 12.3 x 10(exp 6) to 17.1 x 10(exp 6). This paper presents results obtained with body alone and body-fins combinations at 0 degrees (one set of fins vertical and the other set horizontal) and 45 degree angle of roll. The results indicate that the addition of the fins to the body insures static longitudinal stability and provides essentially linear variations of the lift and pitching moment at small angles of attack throughout the Mach number range. The slopes of the lift and pitching-moment curves vary slightly with Mach number and show only small effects due to the angle of roll.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52I10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-11
    Description: At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52G11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-11
    Description: An investigation of a vortex-generator configuration on the wings of a l/4-scale model of the X-1 airplane having a 10-percent-thick wing was conducted in the Langley 16-foot transonic tunnel. The effect of the vortex generators was determined by comparing the model aerodynamic characteristics, wing-pressure distributions, and wing-wake patterns for model configurations with and without vortex generators on the wings. Results are presented from tests at 0.1 increments in Mach number from about 0.69 to 0.99, at Reynolds numbers of about 4.1 x 10(exp 6) to 4.7 x 10(exp 6), and through an angle-of-attack range up to 1.5 deg at lower speeds and up to 5 deg at the highest speed. In general, little difference in the aerodynamic characteristics was observed, except at a Mach number of 0.90 where a rearward movement of the shock on the upper surface of the wing with the vortex generators installed resulted in less separation.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52L26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52G03A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/20-scale model of the Consolidated Vultee XFY-1 airplane with a windmilling propeller simulated to determine the effects of control setting and movements upon the erect spin and recovery characteristics for a range of airplane-loading conditions. The effects on the model's spin-recovery characteristics of removing the lower vertical tail, removing the gun pods, and fixing the rudders at neutral were also investigated briefly. The investigation included determination of the size parachute required for emergency recovery from demonstration spins. The tumbling tendencies of the model were also investigated. Brief static force tests were made to determine the aerodynamic characteristics in pitch at high angles of attack. The investigation indicated that the spin and recovery characteristics of the airplane with propeller windmilling will be satisfactory for all loading conditions if recovery is attempted by full rudder reversal accompanied by simultaneous movement of the stick laterally to full with the spin (stick right in a right spin) and longitudinally to neutral. Inverted spins should be satisfactorily terminated by fully reversing the rudder followed immediately by moving the stick laterally towards the forward rudder pedal and longitudinally to neutral. Removal of the gun pods or fixing the rudders at neutral will not adversely affect the airplane's spin-recovery characteristics, but removal of the lower vertical tail will result in unsatisfactory spin-recovery characteristics. The model-test results showed that a 13.3-foot wing-tip conventional parachute (drag coefficient approximately 0.7) should be effective as an emergency spin-recovery device during demonstration spins of the airplane. It was indicated that the airplane should not tumble and that no unusual longitudinal-trim characteristics should be obtained for the center-of-gravity positions investigated.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52L10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: The possibility of overshooting the anticipated normal acceleration as a result of the artificial-feel characteristics of the F-89C airplane at a condition of minimum static stability was investigated analytically by means of an electronic simulator. Several methods of improving the stick-force characteristics were studied. It is shown that, due to the lag in build-up of the portion of the stick force introduced by the bobweight, it would be possible for excessive overshoots of normal acceleration to occur in abrupt maneuvers with reasonable assumed control movements. The addition of a transient stick force proportional to pitching acceleration (which leads the normal acceleration) to prevent this occurring would not be practical due to the introduction of an oscillatory mode to the stick-position response. A device to introduce a viscous damping force would Improve the stick-force characteristics so that normal acceleration overshoots would not be likely, and the variation of the maximum stick force in rapid pulse-type maneuvers with duration of the maneuver then would have a favorable trend.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SA52L31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: NACA instrumentation has been installed ii the X-J4 airplanes to obtain stability and control data during the acceptance tests conducted by the Northrop Aircraft Corporation. This report presents data obtained on the stalling characteristics of the airplane in the clean and gear- down configurations. The center of gravity was located at approximately 18 percent of the mean aerodynamic chord during the tests. The results indicated that the airplane was not completely stalled when stall was gradually approached during nominally U accelerated flight but that it was completely stalled during a more abruptly approached stall in accelerated flight. The stall in accelerated flight was relatively mild, and this was attributed to the nature of the variation of lift with angle of attack for the 001-614 airfoil section, the plan form of the wing, and to the fact that the initial sideslip at the stall produced (as shown by wind-tunnel tests of a model of the airplane) a more symmetrical stall pattern.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A50A04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: This report presents the results of wind-tunnel force tests which were conducted to determine the low-speed stability and control characteristics of a full-scale Northrop XSSM-A-3 missile. Tests were made through a range of angles of attack, sideslip, and control deflection, and at various Reynolds numbers. Characteristics of the complete missile are compared with the characteristics of the missile with the landing skids extended, with the vertical tail removed, and with the fuselage alone. No analysis of the data has been made in order to make the results available as soon as possible.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SA50D05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: A theoretical investigation has been made to determine the effect on the lateral stability of the Douglas D-58-II airplane of an autopilot sensitive to yawing velocity. The effects of inclination of the gyro spin axis to the flight path and of tire lag in the autopilot were also determined. The flight conditions investigated included landing at sea level, approach condition at 12,000 feet, and cruising at 50,000 feet at Mach numbers of 0.80 and 1.2. The results of the investigation indicated that the lateral stability characteristics of the D-558-II airplane for the flight condition discussed should satisfy the Air Force - Navy period-damping criterion when the proposed autopilot is installed. Airplane motions in sideslip subsequent to a disturbance in sideslip are presented for several representative flight conditions in which a time lag in the autopilot of 0.10 second was assumed.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L50F22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: The investigation of the lateral stability of an automatically controlled glide bomb led also to the attempt of clarifying the influence of a phugoid oscillation or of any general longitudinal oscillation on the lateral stability of a glide bomb. Under the assumption that its period of oscillation considerably exceeds the rolling and yawing oscillation and that c(sub a) is, at least in sections, practically constant, the result of this test is quite simple. It becomes clear that the influence of the phugoid oscillation may be replaced by suitable variation of the rolling-yawing moment on a rectilinear flight path instead of the phugoid oscillation. If the flying weight of the glide bomb of unchanged dimensions is increased, an increase of the flight velocity will be more favorable than an increase of the lift coefficient. The arrangement of the control permits lateral stability to be achieved in every case; a minimum rolling moment due to sideslip proves of great help.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1248 , ZWB Forschungsbericht; Rept-1819
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-11
    Description: An investigation of the longitudinal stability and of the all-movable horizontal tail and aileron control of a 1/80-scale reflection-plane model of the Consolidated Vultee Skate 9 seaplane has been made through a Mach number range of 0.6 to 1.16 on the transonic bump of the Langley high-speed 7- by 10-foot tunnel. At moderate lift coefficients (0.4 to 0.8) and below a Mach number of 1.0 the model was statically unstable longitudinally. The static longitudinal stability of the model at low lift coefficients increased with Mach number corresponding to a shift in aerodynamic center from 37 percent mean aerodynamic chord at a Mach number of 0.60 to 64 percent at a Mach number of 1.10. Estimates indicate that the tail deflection angle required for steady flight and for accelerated maneuvers of the Skate 9 airplane would probably not vary greatly with Mach number at sea level, but for accelerated maneuvers at altitude the tail deflection angle would probably vary erratically with Mach number. The variation of rolling-moment coefficient with aileron deflection angle was approximately linear, agreed well with theory, and held for the range of aileron deflections tested (-17.1 deg to 16.6 deg). At low lift coefficients the drag rise occurred at Mach numbers of 0.95 and 0.90 for the wing alone and the complete model, respectively. The effects of the canopy on the model were small. For the ranges investigated, angle-of-attack and Mach number changes caused no large pressure drops in the jet-engine duct.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL51E22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-11
    Description: A model of the Convair Y2-2 airplane was tested in Langley tank no. 2 to determine whether satisfactory stability in yawed landings was possible with a certain ventral fin. Free-body landings were made in smooth and rough water at two speeds and two rates of descent with the model yawed 15deg. The behavior of the model was determined by visual observations and from motion-picture re.cords. It was concluded that satisfactory stability was possible with the ventral fin as tested but that the characteristics of the model shock absorbers and the settings of the elevon control surfaces had an appreciable influence on behavior.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL51H17A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: The data obtained from the flight of a simplified (dummy) rocket-propelled model of the MX-656 have been analyzed to determine the booster-model characteristics and the model-alone characteristics up to a Mach number of 1.3. The data indicate that the model-booster combination is satisfactory. The model alone is longitudinally stable i n the Mach number range covered by the test (0.9 to 1.3) with the center of gravity at -15 percent of the mean aerodynamic chord. With the stabilizer setting at 0 deg. the variation of normal-force coefficient with Mach number is not large. The total-drag-coefficient variation with Mach number is not unusual. About 12 percent of the total drag at a Mach number of 1.3 can be attributed to body base drag.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL50A07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...