ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Propulsion and Power  (166)
  • Aircraft Stability and Control  (149)
  • Limnology
  • General Chemistry
  • Cell & Developmental Biology
  • 1955-1959  (113)
  • 1945-1949  (202)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-05-11
    Description: Three highly polished 15- included- angle cone- cylinders with hemispherical tips of several diameters ( 2, 3, and 4 in.) have been flown in order to obtain boundary- layer transition data at very low wall to local stream temperature ratios, and heat- transfer data. All surfaces had a 2-microinch average roughness height. Laminar flow existed over the entire hemispherical nose of the 2- and 3-inch-tip- diameter models throughout the complete flight history. Extreme cooling to wall to local stream temperature ratios at the sonic point as low as 0.20 did not cause transition on the nose for diameters as large as 3 inches. However, extreme cooling did cause early transition on the 4-inch model where it appears probable that transition occurred forward of the 45 station at a wall to local stream temperature ratio of about 0.26. Variations in tip diameter influenced transition downstream of the nose under conditions of extreme cooling. The 2-inch- tip model was laminar at all cone- cylinder stations at temperature ratios as low as 0.32 whereas the 3- and 4-inch-tip models were turbulent at the same local flow conditions but at higher wall to local temperature ratios. Transition on the cone and cylinder of the 3- and 4-inch- tip bodies appeared to be sensitive to local Mach number, and occurred at higher local temperature ratios when values of local Mach number were higher. Increasing the nose diameter from 2 to 3 inches significantly changed the local flow conditions for which laminar flow existed on the cone- cylinder afterbody. However, a further increase in tip size t o a 4-inch diameter had no discernable effect on the local flow conditions at transition. The transition results of the 3- and 4-inch-nose-diameter smooth bodies are similar to those observed on a 7/8-inch-nose-diameter body with roughened surfaces. Turbulent boundary layers resulted in both cases at very low wall to local stream temperature ratios. Both laminar and turbulent heat-transfer data were in good agreement with theoretical Stanton numbers when heat-transfer reduction due to tip blunting was considered.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-3-4-59E , GRC-E-DAA-TN65086
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: The present paper summarizes and correlates broadly some of the research results applicable to fin-stabilized ammunition. The discussion and correlation are intended to be comprehensive, rather than detailed, in order to show general trends over the Mach number range up to 7.0. Some discussion of wings, bodies, and wing-body interference is presented, and a list of 179 papers containing further information is included. The present paper is intended to serve more as a bibliography and source of reference material than as a direct source of design information.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L55G06A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: Air-flow characteristics behind wings and wing-body combinations are described and are related to the downwash at specific tall locations for unseparated and separated flow conditions. The effects of various parameters and control devices on the air-flow characteristics and tail contribution are analyzed and demonstrated. An attempt has been made to summarize certain data by empirical correlation or theoretical means in a form useful for design. The experimental data herein were obtained mostly at Reynolds numbers greater than 4 x 10(exp 6) and at Mach numbers less than 0.25.
    Keywords: Aircraft Stability and Control
    Type: NASA-TR-R-49
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: Carrier landing-approach studies of a tailless delta-wing fighter airplane disclosed that approach speeds were limited by ability to control altitude and lateral-directional characteristics. More detailed flight studies of the handling-qualities characteristics of the airplane in the carrier-approach configuration documented a number of factors that contributed to the adverse comments on the lateral-directional characteristics. These were: (1) the tendency of the airplane to roll around the highly inclined longitudinal axis, so that significant sideslip angles developed in the roll as a result only of kinematic effects; (2) reduction of the rolling response to the ailerons because of the large dihedral effect in conjunction with the kinematically developed sideslip angles; and (3) the onset of rudder lock at moderate angles of sideslip at the lowest speeds with wing tanks installed. The first two of the factors listed are inseparably identified with this type of configuration which is being considered for many of the newer designs and may, therefore, represent a problem which will be encountered frequently in the future. The results are of added significance in the demonstration of a typical situation in which extraneous factors occupy so much of the pilot's attention that his capability of coping with the problems of precise flight-path control is reduced, and he accordingly demands a greater speed margin above the stall to allow for airspeed fluctuations.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-15-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: An investigation has been made to determine the effect of wing fences, fuselage contouring, varying wing sweepback angle from 40 deg. to 45 deg., mounting the horizontal tail on an outboard boom) and wing thickness distribution upon the buffeting response of typical airplane configurations employing sweptback wings of high aspect ratio. The tests were conducted through an angle-of-attack range at Mach numbers varying from 0.60 to 0.92 at a Reynolds number of 2 million. For the combinations with 40 deg. of sweepback, the addition of multiple wing fences usually decreased the buffeting at moderate and high lift coefficients and reduced the erratic variation of buffet intensities with increasing lift coefficient and Mach number. Fuselage contouring also reduced buffeting but was not as effective as the wing fences. At most Mach numbers, buffeting occurred at higher lift coefficients for the combination with the NACA 64A thickness distributions than for the combination with the NACA four-digit thickness distributions. At high subsonic speeds, heavy buffeting was usually indicated at lift coefficients which were lower than the lift coefficients for static-longitudinal instability. The addition of wing fences improved the pitching-moment characteristics but had little effect on the onset of buffeting. For most test conditions and model configurations, the root-mean- square and the maximum values measured for relative buffeting indicated similar effects and trends; however, the maximum buffeting loads were usually two to three times the root-mean-square intensities.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-23-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: The effect of stator and rotor aspect ratio on transonic-turbine performance was experimentally investigated. The stator aspect ratios covered were 1.6. 0.8, and 0.4, while the rotor aspect ratios investigated were 1.46 and 0.73. It was found that the observed variation in turbine design-point efficiency was negligible. Thus, within the range of aspect ratio investigated, these results verify for turbines operating in the transonic flow range the finding of a reference report, which showed analytically that, if blade shape and solidity are held constant, the aspect ratio may be varied over a wide range without appreciable change in turbine efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-11-59E , E-177
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: The suitability of cermets for turbine stator blades of a modified turbojet engine was determined at an average turbine-inlet-gas temperature of 2000 F. Such an increase in temperature would yield a premium in thrust from a service engine. Because the cermet blades require no cooling, all the available compressor bleed air could be used to cool a turbine made from conventional ductile alloys. Cermet blades were first run in 100-hour endurance tests at normal gas temperatures in order to evaluate two methods for mounting them. The elevated gas-temperature test was then run using the method of support considered best for high-temperature operation. After 52 hours at 2000 F, one of the group of four cermet blades fractured probably because of end loads resulting from thermal distortion of the spacer band of the nozzle diaphragm. Improved design of a service engine would preclude this cause of premature failure.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-13-59E , E-147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-11-3-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-9-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-16-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-17
    Description: An investigation of the use of ballast at the leading edge of a sweptback wing as a flutter fix has been made. The investigation was conducted in the Langley transonic blowdown tunnel with wing models which had an aspect ratio of 4, sweepback of the quarter-chord line of 450, and a taper ratio of 0.2. Four ballast configurations, which included different amounts of ballast distributed at two different span-wise locations, were investigated. Full-span sting-mounted models were employed. Data were obtained over a Mach number range from 0.65 to 1.32. Comparison of the data for the ballasted wings with data for a similar wing without ballast shows that in the often critical Mach number range between 0.85 and 1.05, the dynamic pressure required for flutter is increased by as much as 100 percent due to the addition of about 6 percent of the wing mass as ballast at the leading edge of the outboard sections. Furthermore, there are indications that similar benefits of leading-edge ballast can be obtained at Mach numbers above M = 1.1. Changing the spanwise location of the ballast and increasing the amount of the ballast by a factor of about 2 had very little additional effect on the dynamic pressure required for flutter. The possibility, therefore, exists that the beneficial effects obtained may be accomplished by using less than the minimum of about 6 percent of the wing mass as ballast as investigated in this paper.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-16
    Description: Free-oscillation tests were made in the Langley high-speed 7- by 10-foot tunnel to determine the effects of wing thickness and wing sweep on the hinge-moment and flutter characteristics of a trailing-edge flap-type control. The untapered semispan wings had full-span aspect ratios of 5 and NACA 65A-series airfoil sections. Unswept wings having ratios of wing thickness to chord of 0.04, 0.06, 0.08, and 0.10 were investigated. The swept wings were 6 percent thick and had sweep angles of 30 deg and 45 deg. The full-span flap-type controls had a total chord of 50 percent of the wing chord and were hinged at the 0.765-wing-chord line. Tests were made at zero angle of attack over a Mach number range from 0.60 to 1.02, control oscillation amplitudes up to about 12 deg, and a range of control-reduced frequencies. Static hinge-moment data were also obtained. Results indicate that the control aerodynamic damping for the 4-percent-thick wing-control model was unstable in the Mach number range from 0.92 to 1.02 (maximum for these tests). Increasing the ratio of wing thickness to chord to 0.06, 0.08, and then to 0.10 had a stabilizing effect on the aerodynamic damping in this speed range so that the aerodynamic damping was stable for the 10-percent-thick model at all Mach numbers. The 6-percent-thick unswept-wing-control model generally had unstable aerodynamic damping in the Mach number range from 0.96 to 1.02. Increasing the wing sweep resulted in a general decrease in the stable aerodynamic damping at the lower Mach numbers and in the unstable aerodynamic damping at the higher Mach numbers. The one-degree-of-freedom control-surface flutter which occurred in the transonic Mach number range (0.92 to 1.02) for the 4-, 6-, and 8-percent-thick unswept-wing-control models could be eliminated by further increasing the ratio of thickness to chord to 0.10. Flutter could also be eliminated by increasing the wing sweep angle to either 30 deg or 45 deg. The magnitude of variation in spring moment derivative with Mach number at transonic speeds was decreased by either increasing the ratio of wing thickness to chord or increasing the wing sweep angle.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-123
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-16
    Description: An investigation was conducted to obtain the aerodynamic characteristics of a model of a fighter-type airplane embodying partial body indentation. The wing had an aspect ratio of 4, taper ratio of 0.5, 35 deg sweepback of the 0.25-chord line, and a modified NACA 65A006 airfoil section at the root and a modified NACA 65A004 airfoil section at the tip. The fuselage has been indented in the region of the wing in order to obtain a favorable area distribution. The results reported herein consist of the performance and of the static longitudinal and lateral stability and control characteristics of the complete model. The Mach number range extended from 0.60 to 1.13, and the corresponding Reynolds number based on the wing mean aerodynamic chord varied from 1.77 x 10(exp 6) to 2.15 x 10(exp 6). The drag rise for both the cambered leading edge and symmetrical wing sections occurred at a Mach number of 0.95. Certain local modifications to the body which further improved the distribution of cross-sectional area gave additional reductions in drag at a Mach number of 1.00. The basic configuration indicated a mild pitch-up tendency at lift coefficients near 0.70 for the Mach number range from 0.80 to 0.90; however, the pitch-up instability may not be too objectionable on the basis of dynamic-stability considerations. The basic configuration indicated positive directional stability and positive effective dihedral through the angle-of-attack range and Mach number range with the exception of a region of negative effective dihedral at low lifts at Mach numbers of 1.00 and slightly above.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-13-58L , L-476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-16
    Description: An analytical investigation has been carried out to determine the responses of a flicker-type roll control incorporated in a missile which traverses a range of Mach number of 6.3 at an altitude of 82,000 feet to 5.26 at an altitude of 282,000 feet. The missile has 80 deg delta wings in a cruciform arrangement with aerodynamic controls attached to the fuselage near the wing trailing edge and indexed 450 to the wings. Most of the investigation was carried out on an analog computer. Results showed that roll stabilization that may be adequate for many cases can be obtained over the altitude range considered, providing that the rate factor can be changed with altitude. The response would be improved if the control deflection were made larger at the higher altitudes. lag times less than 0.04 second improve the response appreciably. Asymmetries that produce steady rolling moments can be very detrimental to the response in some cases. The wing damping made a negligible contribution to the response.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-23-59L , L-211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-16
    Description: An investigation was made to determine the characteristics of a nonlinear linkage installed in a power control system incorporated in a ground simulator. The nonlinear linkage provided for increased control-stick motion for relatively small simulator response at control motions near neutral. The quality of the control system was rated on the ease and precision with which various tracking tasks were performed by the pilots who operated the simulator. The results obtained with the nonlinear linkage installed in the control system were compared with those obtained by using the normal linear control system. Several combinations of nonlinearity of the linkage were tested for various dynamic characteristics of the simulator. It was found that the pilots were able to track almost as well with the nonlinear linkage installed as with the normal system. All of the pilots were of the opinion, however, that the nonlinearity was an undesirable feature in the control system because of the apparent lack of simulator response through the neutral range of the linkage where relatively large stick deflections could be made with very little simulator motion. The results showed that increased lag between the target and chair position, higher stick-force levels, and uneven stick forces due to the dynamics of the linkage were general characteristics of all the nonlinear linkage conditions tested. It was also found that for cases of low simulator damping, rapid control motions caused considerably higher overshoots when the nonlinear linkage was installed than were obtained for the normal linear control system. These characteristics were considered to be sufficiently undesirable to out-weigh the advantages to be gained from the use of a nonlinear linkage in the control system of an airplane.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-15-59L , L-174
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-16
    Description: The possibility of obtaining useful estimates of the static longitudinal stability of aircraft flying at high supersonic Mach numbers at angles of attack between 0 and +/-180 deg is explored. Existing theories, empirical formulas, and graphical procedures are employed to estimate the normal-force and pitching-moment characteristics of an example airplane configuration consisting of an ogive-cylinder body, trapezoidal wing, and cruciform trapezoidal tail. Existing wind-tunnel data for this configuration at a Mach number of 6.86 provide an evaluation of the estimates up to an angle of attack of 35 deg. Evaluation at higher angles of attack is afforded by data obtained from wind-tunnel tests made with the same configuration at angles of attack between 30 and 150 deg at five Mach numbers between 2.5 and 3.55. Over the ranges of Mach numbers and angles of attack investigated, predictions of normal force and center-of-pressure locations for the configuration considered agree well with those obtained experimentally, particularly at the higher Mach numbers.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-1-17-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-16
    Description: A wind-tunnel investigation was made at low speed in the Langley stability tunnel in order to determine the effects of fuselage nose length and a canopy on the oscillatory yawing derivatives of a complete swept-wing model configuration. The changes in nose length caused the fuselage fineness ratio to vary from 6.67 to 9.18. Data were obtained at various frequencies and amplitudes for angles of attack from 0 deg. to about 32 deg. Static lateral and longitudinal stability data are also presented.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-1-15-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-16
    Description: Results of an investigation of the static longitudinal stability and control characteristics of an aspect-ratio-3.1, unswept wing configuration equipped with an aspect-ratio-4, unswept horizontal tail are presented without analysis for the Mach number range from 0.70 to 2.22. The hinge line of the all-movable horizontal tail was in the extended wing chord plane, 1.66 wing mean aerodynamic chords behind the reference center of moments. The ratio of the area of the exposed horizontal-tail panels to the total area of the wing was 13.3 percent and the ratio of the total areas was 19.9 percent. Data are presented at angles of attack ranging"from -6 deg to +18 deg for the horizontal tail set at angles ranging from +5 deg to -20 deg and for the tail removed.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-6-11-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-16
    Description: The design and experimental investigation of a 4.5-inch-mean-diameter two-stage turbine are presented herein and used to study the effect of size on the efficiency of turbines in the auxiliary power drive class. The results of the experimental investigation indicated that design specific work was obtained at design speed at a total-to-static efficiency of 0.639. At design pressure ratio, design static-pressure distribution through the turbine was obtained with an equivalent specific work output of 33.2 Btu per pound and an efficiency of 0.656. It was found that, in the design of turbines in the auxiliary power drive class, Reynolds number plays an important part in the selection of the design efficiency. Comparison with theoretical efficiencies based on a loss coefficient and velocity diagrams are presented. Close agreement was obtained between theory and experiment when the loss coefficient was adjusted for changes in Reynolds number to the -1/5 power.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-6-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-16
    Description: An experimental investigation has been made to determine the static stability characteristics of three thick wing models with parabolic plan forms at a Mach number of 3.11 for angles of attack from about -6 to 16 deg. The primary variable was aspect ratio, with the plan-form area and the ratio of base height to span kept the same for all three models. All models had stable, linear pitching-moment curves about the quarter chord of the wing mean aerodynamic chord. The model with the lowest aspect ratio attained a maximum untrimmed lift-drag ratio of about 5.0 at an angle of attack of about 8 deg. Increasing the aspect ratio (which was accompanied by an increase in base area because the ratio of the base height to span was kept constant) caused a decrease in maximum lift-drag ratio. All models were directionally stable for the range of angle of attack of the tests. Addition of a vertical tail to the models caused an increase in the directional stability over the angle-of-attack range. In general, the lateral aerodynamic characteristics of the models were not linear functions of angle of attack over any appreciable angle-of-attack range.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-141 , L-597
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-16
    Description: An investigation of the static stability characteristics of several hypersonic boost-glide configurations has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.41 and 2.01 (with Reynolds numbers per foot of 2.90 x 10(exp 6) and 2.41 x 10(exp 6) respectively). This series of configurations consisted of a cone, with and without cruciform fins, a trihedron, two low-aspect-ratio delta wings that differed primarily in cross-sectional shape, and two wing-body configurations. All configurations indicated reasonably linear pitching-, yawing-, and rolling-moment characteristics for angles of attack to at least 12 deg. The maximum lift-drag ratio for the zero-thrust condition (base drag included) was about 3 for the delta-wing configurations and about 4 for the wing-body configurations.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-167
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-14
    Description: Results of tests at Mach numbers of 3.0 and 7.3 for possible wing flutter of a series of models of a boost-glide-vehicle wing are presented herein. All of the models were tested at conditions which exceeded the proposed nominal design requirements for the full-scale vehicle; namely, dynamic pressure of 1,000 pounds per square foot at the test Mach numbers. None of the models experienced flutter; therefore, large margins of safety from wing flutter are indicated. However, the effects of body freedoms on the flutter characteristics and local types of flutter were not investigated.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-37 , HQ-E-DAA-TN54209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-08-15
    Description: The results of several flutter investigations to determine the effects of plan-form variations on the flutter characteristics of thin cantilevered wings at transonic Mach numbers have been reported previously. In the present investigation the data are extended to include a wing having an aspect ratio of 4, 45 of sweepback, and a taper ratio of 0.2. The data were obtained in the Langley transonic blowdown tunnel over a Mach number range from 0.6 to 1.4. The experimental results indicate an abrupt and rather large increase in both a flutter-speed parameter and a flutter-frequency parameter as the Mach number is increased from 1.05 to 1.10. The foregoing is interpreted as indicating a marked change in the flutter mode. Calculated flutter speeds, based on incompressible-flow aerodynamic coefficients, were too high by 20 percent or more throughout the subsonic Mach number range of the investigation. Calculated flutter frequencies were about 7 percent too high at a Mach number of 0.65 and were about 20 percent too high at a Mach number of 0.9. No significant independent effects of thickness were indicated for the plan form investigated as the thickness was changed from 3 to 4 percent chord.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-136
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-15
    Description: Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel to determine the effect of tail dihedral on lateral control effectiveness of a complete-model configuration having differentially deflected horizontal-tail surfaces. Limited tests were made to determine the lateral characteristics as well as the longitudinal characteristics in sideslip. The wing had an aspect ratio of 3, a taper ratio of 0.14, 28.80 deg sweep of the quarter-chord line with zero sweep at the 80-percent-chord line, and NACA 65A004 airfoil sections. The test Mach number range extended from 0.60 to 0.92. There are only small variations in the roll effectiveness parameter C(sub iota delta) with negative tail dihedral angle. The tail size used on the test model, however, is perhaps inadequate for providing the roll rates specified by current military requirements at subsonic speeds. The lateral aerodynamic characteristics were essentially constant throughout the range of sideslip angle from 12 deg to -12 deg. A general increase in yawing moment was noted with increased negative dihedral throughout the Mach number range.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-1-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-15
    Description: The performance of turbine-engine combustors usually is given in terms of operating limits and combustion efficiency. The latter property is determined most often by measuring the increase in enthalpy across the combustor through the use of thermocouples. This investigation was conducted to determine the ability of gas-analytical techniques to provide additional information about combustor performance. Gas samples were taken at the outlet and two upstream stations and their compositions determined. In addition to over-all combustion efficiency, estimates of local fuel-air ratios, local combustion efficiencies, and heat-release rates can be made. Conclusions can be drawn concerning the causes of combustion inefficiency and may permit corrective design changes to be made more intelligently. The purpose of this investigation was not to present data for a given combustor but rather to show the types and value of additional information that can be gained from gas-analytical data.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-1-26-59E , E-245
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-15
    Description: Theoretical analysis of the longitudinal behavior of an automatically controlled supersonic interceptor during the attack phase against a nonmaneuvering target is presented. Control of the interceptor's flight path is obtained by use of a pitch rate command system. Topics lift, and pitching moment, effects of initial tracking errors, discussion of normal acceleration limited, limitations of control surface rate and deflection, and effects of neglecting forward velocity changes of interceptor during attack phase.
    Keywords: Aircraft Stability and Control
    Type: NASA-TR-R-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-15
    Description: Normal forces, axial forces, pitching moments, and rolling moments on the model and hinge moments on each of the four control surfaces were measured. Control surfaces were deflected from -35 deg to 15 deg in various combinations to produce pitching, yawing, and rolling moments on the model over a range of angles of attack from -5 deg to 25 deg at roll angles from -135 deg to 45 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-6-6-59A , AF-AM-162 , A-213 , AF-AM-162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-15
    Description: Results of an investigation to determine the static longitudinal stability and control characteristics of an aspect-ratio-2 triangular wing and body configuration equipped with either a canard control, a trailing-edge-flap control, or a cambered forebody are presented without analysis for Mach numbers from 0.70 to 2.22. The canard surface had a triangular plan form and a ratio of exposed area to total wing area of 7.8 percent. The hinge line of the canard was in the extended wing chord plane, 0.83 wing mean aerodynamic chord ahead of the reference center of moments. The trailing-edge controls were constant-chord full-span flaps with exposed area equal to 10.7 percent of the total wing area. The cambered body was a modified Sears-Haack body with camber only ahead of the wing apex. Data are presented for various canard and flap deflections at angles of attack ranging from -6 deg to +18 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-21-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-10
    Description: The results are presented in the form of preliminary design charts which give a comparison between the dynamic-response factors of the semi-rigid case and the airplane longitudinal short-period case and between the dynamic-response factors of the semi-rigid case and the steady-state value of the airplane longitudinal short-period response. These charts can be used to estimate the first-order effects of the addition of a wing-bending degree of freedom on the short-period dynamic-response factor and on the maximum dynamic-response factor when compared with the steady-state response of the system.
    Keywords: Aircraft Stability and Control
    Type: NASA-TR-R-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-08-15
    Description: A 0.10-scale model of a swept-wing fighter airplane was tested in the Langley high-speed 7- by 10-foot tunnel at Mach numbers from 0.60 to 0.92 to determine the effects of adding underfuselage speed brakes. The results of brief spoiler-aileron lateral control tests also are included. The tests show acceptable trim and drag increments when the speed brakes are installed at the 32-71-inch fuselage station.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-188 , L-381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-08-15
    Description: Force tests of the static and dynamic lateral stability characteristics of a VTOL airplane having a triangular wing mounted high on the fuselage with a triangular vertical tail on top of the wing and no horizontal tail have been made in the Langley free-flight tunnel. The static lateral stability parameters and the rolling, yawing, and sideslipping dynamic stability derivatives are presented without analysis.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-143 , L-640
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-15
    Description: Results of hypersonic flutter tests on some simple models are presented. The models had rectangular plan forms of panel aspect ratio 1.0, no sweepback, and bending-to-torsion frequency ratios of about 1/3. Two airfoil sections were included in the tests; double wedges of 5-, 10-, and 15-percent thickness and flat plates with straight, parallel sides and beveled leading and trailing edges. The models were supported by a cantilevered shaft. The double-wedge wings were tested in helium at a Mach number of 7.2. An effect of airfoil thickness on flutter speed was found, thicker wings requiring more stiffness to avoid flutter. A few tests in air at a Mach number of 6.9 showed the same thickness effect and also indicated that tests in helium would predict conservative flutter boundaries in air. The data in air and helium seemed to be correlated by piston-theory calculations. Piston-theory calculations agreed well with experiment for the thinner models but began to deviate as the thickness parameter MT approached and exceeded 1.0. A few tests on flat-plate models with various elastic-axis locations were made. Piston-theory calculations would not satisfactorily predict the flutter of these models, probably because of their blunt leading edges.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-8-59L , L-199
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-15
    Description: An investigation was conducted to determine the flameholding capabilities of aerodynamic jets at afterburner operating conditions. Stability data for a number of aerodynamic flameholders were obtained in a 5- by 5-inch test section at inlet-air reference velocities up to 600 feet per second, an inlet-air temperature of 1250 F, and a combustor-inlet pressure of 15 inches of mercury absolute. Combustion efficiency and stability data of the more promising combinations were then obtained in a 10- by 12-inch test section at the same test conditions. Both air and stoichiometric mixtures of fuel and air were used in the jets; mixture flow rates were approximately 1 percent by weight of the total air-flow rate. Injection pressures were limited to values that might be available from compressor-bleed air. At a reference velocity of 600 feet per second, aerodynamic flame-holders alone were unable to maintain a stable flame at injection pressures up to 70 pounds per square inches large reductions in velocity were required to achieve flame stabilization. When the aerodynamic jets were used in combination with a V-gutter flameholder with approximately a 30 percent blocked area, flame stabilization was attained at a velocity of 600 feet per second; however, the combustion efficiencies of the various combinations were no greater than that obtained with the V-gutter alone.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-9-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-15
    Description: An investigation was made at transonic speeds to determine some of the dynamic stability derivatives of a 45 deg. sweptback-wing airplane model. The model was sting mounted and was rigidly forced to perform a single-degree-of-freedom angular oscillation in pitch or yaw of +/- 2 deg. The investigation was made for angles of attack alpha, from -4 deg. to 14 deg. throughout most of the transonic speed range for values of reduced-frequency parameter from 0.015 to 0.040 based on wing mean aerodynamic chord and from 0.04 to 0.14 based on wing span. The results show that reduced frequency had only a small effect on the damping-in-pitch derivative and the oscillatory longitudinal stability derivative for all Mach numbers M and angles of attack with the exception of the values of damping coefficient near M = 1.03 and alpha = 8 deg. to 14 deg. In this region, the damping coefficient changed rapidly with reduced frequency and negative values of damping coefficient were measured at low values of reduced frequency. This abrupt variation of pitch damping with reduced frequency was a characteristic of the complete model or wing-body-vertical-tail combination. The damping-in-pitch derivative varied considerably with alpha and M for the horizontal-tail-on and horizontal-tail-off configurations, and the damping was relatively high at angles of attack corresponding to the onset of pitch-up for both configurations. The damping-in-yaw derivative was generally independent of reduced frequency and M at alpha = -4 deg. to 4 deg. At alpha = 8 deg. to 14 deg., the damping derivative increased with an increase in reduced frequency and alpha for the configurations having the wing, whereas the damping derivative was either independent of or decreased with increase in reduced frequency for the configuration without the wing. The oscillatory directional stability derivative for all configurations generally decreased with an increase in the reduced-frequency parameter, and, in some instances, unstable values were measured for the model configuration with the horizontal tail removed.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-15
    Description: An analytical approach is presented which is applicable to the optimization of homing navigation guidance systems which are forced to operate in the presence of radar noise. The two primary objectives are to establish theoretical minimum miss distance performance and a method of synthesizing the optimum control system. The factors considered are: (1) target evasive maneuver, (2) radar glint noise, (3) missile maneuverability, and (4) the inherent time-varying character of the kinematics. Two aspects of the problem are considered. In the first, consideration is given only to minimization of the miss distance. The solution given cannot be achieved in practice because the required accelerations are too large. In the second, results are extended to the practical case where the limited acceleration capabilities of the missile are considered by placing a realistic restriction on the mean-square acceleration so that system operation is confined to the linear range. Although the exact analytical solution of the latter problem does not appear feasible, approximate solutions utilizing time-varying control systems can be found. One of these solutions - a range multiplication type control system - is studied in detail. It is shown that the minimum obtainable miss distance with a realistic restriction on acceleration is close to the absolute minimum for unlimited missile maneuverability. Furthermore, it is shown that there is an equivalence in performance between the homing and beam-rider type guidance systems. Consideration is given to the effect of changes in target acceleration, noise magnitude, and missile acceleration on the minimum miss distance.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-13-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-15
    Description: An investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/30-scale model of the Grumman WF-2 airplane. The effects of control settings and movements upon the erect-spin and recovery characteristics for the flight gross-weight loading with normal center-of-gravity and rearward center-of-gravity positions were determined. For the inverted-spin tests, the flight gross-weight loading with normal center-of-gravity position was used. Brief tests were also made with the radome removed to determine the effect of the radome on the spin and recovery characteristics of the airplane. The results of the tests of the model indicate that erect spins of the airplane in the flight gross-weight loading with the normal (26.3-percent mean aerodynamic chord) center-of-gravity position and with the most rearward (30-percent mean aerodynamic chord) center-of-gravity position possible will be satisfactorily terminated by full rudder reversal to against the spin accompanied by movement of the elevator to at least two-thirds down. With the radome removed, the spin will be steeper and considerably more oscillatory than with the radome on. Recoveries by the preceding technique will be satisfactory. Inverted spins of the airplane will be satisfactorily terminated by full rudder reversal followed by neutralization of the longitudinal and lateral controls.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-24-59L , L-326 , NASA-AD-3134
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-15
    Description: Incompressible-flow calculations were performed to determine the effects of combustor geometric and operating variables on pressure loss and airflow distribution in a tubular combustor with a tapered liner. The calculations include the effects of momentum transfer between annulus and liner gas streams, annulus wall friction, heat release, and discharge coefficients of liner air-entry holes. Generalized curves are presented which show the effects of liner-wall inclination, liner open hole area, and temperature rise across the combustor on pressure loss and airflow distribution for a representative parabolic liner hole distribution. A comparison of the experimental data from 12 tapered liners with the theoretical calculations indicates that reasonable design estimates can be made from the generalized curves. The calculated pressure losses of the tapered liners are compared with those previously reported for tubular liners.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-11-26-58E , E-126
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-15
    Description: A comparison of the performance of a single-stage rotor run at three different blade setting angles is presented. The rotor was of a design typical for a last stage of a multistage compressor. At each setting angle, the rotor blade row was operated from 53 to 100 percent of equivalent maximum speed (850 ft/sec tip speed) at constant inlet pressure. Hot-wire anemometry was used to observe rotating-stall and surge patterns in time unsteady flow. Results indicated that an increase in peak pressure ratio and an increase in maximum equivalent weight flow were obtained at each speed investigated when the blade setting angle was decreased. An increase in peak efficiency was achieved with decrease in blade setting angle for part of the range of speeds investigated. However, the peak efficiencies for the three blade setting angles were approximately the same at the maximum speed investigated. The flow ranges for all three configurations were about the same at minimum speed and decreased at almost the same rate when the rotative speed was increased through part of the range of speeds investigated. At maximum speed, the flow range for the smallest setting angle was considerably less than the flow range for the other two configurations. A decrease in efficiency and flow range for the smallest blade setting angle at maximum speed can be attributed primarily to a Mach number effect. In addition, because of the difference in projected axial chord lengths at the casing wall, some effect on performance could be expected from the change in three-dimensional flow occurring at the tip. Rotating-stall characteristics for the two smaller blade setting angles were essentially the same. Only surge could be detected for the largest blade setting angle in the unstable-flow region of operation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-11-27-58E , E-117
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-15
    Description: A wind-tunnel investigation was made of the low-speed characteristics of a canard configuration having triangular wing and canard surfaces with an aspect ratio of 2. The exposed area of the canard was 6.9 percent of the total wing area. The canard hinge line was located at 0.35 of its mean aerodynamic chord and was 0.5 wing mean aerodynamic chord lengths forward of the wing apex. The ground effects, which made the lift more positive and the -Pitching moment more negative at a given angle of attack, were unaffected by the canard. The stability of the model at a constant canard hinge-moment coefficient decreased to 0 near a lift coefficient of 1.0. In addition, the maximum lift coefficient at which the canard could provide balance was decreased by ground effects to less than 1.0 if the moment center was as far forward as 0.21 of the wing mean aerodynamic chord. The relative magnitude of interference effects between the canard and the wing and body is presented.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-4-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-15
    Description: A preliminary theoretical investigation has been made of the short-period longitudinal and steady-rolling (inertia coupling) stability of a hypersonic glider configuration for center-of-gravity locations rear-ward of the airplane neutral point. Such center-of-gravity positions for subsonic flight would improve performance by reducing supersonic and hypersonic static margins and trim drag. Results are presented of stability calculations and a simulator study for a velocity of 700 ft/sec and an altitude of 401,000 feet. With no augmentation, the airplane was rapidly divergent and was considered unsatisfactory in the simulator study. When a pitch damper was employed as a stability augmenter, the short-period mode became overdamped, and the airplane was easily controlled on the simulator. A steady-rolling analysis showed that the airplane can be made free of rolling divergence for all roll rates with an appropriate damper gain.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-5-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-15
    Description: Based on linearized equations of motion utilizing only the three moment equations and assuming only flat-spin conditions, it appears that contemporary designs (with the moment of inertia about the wing axis I(sub Y) considerably greater than the moment of inertia about the fuselage axis I(sub X) having positive values of C(sub l, sub p) (rolling-moment coefficient due to rolling) or positive values of C(sub l, sub beta) (rolling-moment coefficient due to sideslip) will probably not have a stable spin in the flat-spin region near an angle of attack of 90 deg. If the damping in pitch in flat-spin attitudes is zero, stable flat-spin conditions may not be possible on an airplane having the mass primarily distributed along the wings. The effect of moving ailerons with the spin or the effect of applying a positive pitching moment producing recovery for contemporary fighter designs will be greatest for large negative values of C(sub n, sub beta) (yawing-moment coefficient due to sideslip). In addition, for a certain critical value of positive C(sub n, sub beta), the rolling moment applied by moving ailerons with the spin or the application of a positive pitching moment will have no effect on reducing the spin rate.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-25-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-15
    Description: A wind-tunnel investigation was made to determine the longitudinal- and lateral-stability derivatives of a flat-top wing-body configuration at Mach numbers from 0.22 to 0.90 and Reynolds numbers of 3.5 and 17 million. The wing had a leading-edge sweepback of 78.9 deg and a cathedral of 45 deg on the outer panels. The tests included the determination of the effectiveness of elevon and rudder controls and also an investigation of ground effects. The model was tested at angles of attack up to 28 deg and angles of sideslip up to 18 deg. The dynamic response of this configuration has been determined from the wind-tunnel data for a simulated airplane having a wing loading of 17.7 pounds per square foot. The longitudinal data show a forward shift in aerodynamic center of 10 percent of the mean aerodynamic chord as the lift coefficient is increased above 0.1. Although flown in the lift range of decreasing stability, the simulated airplane did not encounter pitch-up in maneuvers initiated from steady level flight with zero static margin unless a load factor of 2.2 was exceeded. This maneuver margin was provided by a large value of pitching moment due to pitching velocity. The number of cycles to damp the Dutch roll mode to half amplitude, the time constants of the roll subsidence and spiral divergence modes, and control effectiveness in roll are computed. The lateral stability is shown to be positive but is marginal in meeting the military specifications for today's aircraft. An analog computer study has been made in five degrees of freedom (constant velocity) which illustrates that the handling characteristics are satisfactory. Several programed rolling maneuvers and coordinated turns also illustrate the handling qualities of the airplane.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-5-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-15
    Description: Two rocket-propelled missiles have been test flown by the Langley Pilotless Aircraft Research Division in order to study the stability characteristics of a body with six rectangular fins of very low aspect ratio. The fins, which had exposed aspect ratios of approximately o.o4 and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18, respectively. Each body had a nose with a fineness ratio of 3.5 and a cylindrical afterbody. The body and the fin chord of the model having a fineness ratio of 12 were extended the length of 6 body diameters to produce the model with a fineness ratio of 18. The missiles were disturbed in flight by pulse rockets in order to obtain the stability data. The tests were performed over a Mach number range of 1.4 to 3.2 and a Reynolds number range of 2 x 10(exp 6) to 21 x l0(exp 6). The results of these tests indicate that these configurations with the long rectangular fins of very low aspect ratio showed little induced roll" with the missile of highest fineness ratio and longest fin chord exhibiting the least amount. Extending the body and fin chord of the shorter missile six body diameters and thereby increasing the fin area approximately 115 percent increased the lift-curve slope based on body cross-sectional area approximately 40 to 55 percent, increased the dynamic stability by a substantial amount, and increased the drag from 14 to 33 percent throughout the comparable Mach number range. The center-of-pressure location of both missiles remained constant over the Mach number range.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-2-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-15
    Description: Results are presented of a wind-tunnel investigation to evaluate the static and dynamic stability derivatives of a model with a low-aspect-ratio unswept wing and a high horizontal tail. In addition to results for the complete model, results were also obtained of the body alone, body and wing, and body and tail. Data were obtained in the Mach number range from 0.65 to 2.2, at a Reynolds number of 2 million based on the wing mean aerodynamic chord. The angle-of-attack range for most of the data was -11.5 deg to 18 deg. A limited amount of data was obtained with fixed transition. A correspondence between the damping in pitch and the static stability, previously noted in other investigations, was also observed in the present results. The effect observed was that a decrease (or increase) in the static stability was accompanied by an increase (or decrease) in the damping in pitch. A similar correspondence was observed between the damping in yaw and the static-directional stability. Results from similar tests of the same model configuration in two other facilities over different speed ranges are presented for comparison. It was found that most of the results from the three investigations correlated reasonably well. Estimates of the rotary derivatives were made using available procedures. Comparison with the experimental results indicates the need for development of more precise estimation procedures.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-6-5-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-15
    Description: An investigation has been conducted in the Langley free-flight tunnel at low-subsonic speeds to provide some basic information on the stability and control characteristics in the high angle-of-attack range of an airplane configuration typical of current design trends. The investigation consisted of static- and dynamic-force tests over an angle-of- attack range from -10 to 90 deg. The dynamic-force tests, which consisted of both linear- and rotary-oscillation tests, were conducted at values of the reduced-frequency parameter k of 0.10, 0.15, and 0.20. The configuration was directionally unstable for all angles of attack above about 15 deg but maintained positive effective dihedral, control effectiveness, and damping in roll and yaw over most of the angle-of-attack range tested. The effects of frequency on the oscillatory stability derivatives were found to be generally small, but in a few cases the effects were relatively large.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-20-59L , L-365
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-15
    Description: An investigation of a small-scale reaction control devices in still air with both subsonic and supersonic internal flows has shown that lateral forces approaching 70 percent of the resultant force of the undeflected jet can be obtained. These results were obtained with a tilted extension at a deflection of 40 deg. The tests of tilted extensions indicated an optimum length-to-diameter ratio of approximately 0.75 to 1.00, dependent upon the deflection angle. For the two geometric types of spoiler tabs tested, blockage-area ratio appears to be the only variable affecting the lateral force developed. Usable values of lateral force were developed by the full-eyelid type of device with reasonably small losses in the thrust and weight flow. Somewhat larger values of lateral force were developed by injecting a secondary flow normal to the primary jet, but for conditions of these tests the losses in thrust and weight flow were large. Relatively good agreement with other investigations was obtained for several of the devices. The agreement of the present results with those of an investigation made with larger-scale equipment indicates that Reynolds number may not be critical for these tests. In as much as the effects of external flow could influence the performance and other factors affecting the choice of a reaction control for a specific use, it would appear desirable to make further tests of the devices described in this report in the presence of external flow.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-11-59L , L-160
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-15
    Description: A flight investigation of an automatic throttle control in landing approaches has been made. It was found that airspeed could be maintained satisfactorily by the automatic throttle control. Turbulent air caused undesirably large variations of engine power which were uncomfortable and disconcerting; nevertheless, the pilot felt that he could make approaches 5 knots slower with equal assurance when the automatic control was in operation.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-19-59L , L-432
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-15
    Description: Seven stabilizers were tested at a Mach number of 2 in order to determine the effects of aerodynamic heating and loading on the structural stability of the stabilizer. The models differed in internal structure and postcure temperatures of the laminated Fiberglass skin. Tests were made at various stagnation temperatures between 440 F and 625 F. The postcure temperatures of the Fiberglass skins were found to affect significantly the ability of the model to withstand the imposed test conditions.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-15
    Description: An investigation of the low-speed static stability and control characteristics of a model of a right triangular pyramid reentry configuration has been made in the Langley free-flight tunnel. The investigation showed that the model had generally satisfactory longitudinal and lateral static stability characteristics. The maximum lift-drag ratio was increased from about 3 to 5 by boattailing the base of the model.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-11-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-15
    Description: An investigation has been made in the Langley free-flight tunnel at low-subsonic speed to determine the static stability, control effectiveness, and damping in roll and yaw of a model with a low-aspect-ratio unswept wing and two different fuselage forebodies at angles of attack from 0 deg to 90 deg. Results were obtained with a fuselage configuration having a long pointed nose and a shorter rounded nose. Although the wing stalled at an angle of attack of about 12 deg, maximum lift did not occur until an angle of attack of about 40 deg or 50 deg was obtained. The static longitudinal stability of the model having a short rounded nose was greater than that of the model having a longer pointed nose over the entire angle-of-attack range. The pointed-nose model had large out-of-trim yawing moments above an angle of attack of about 40 deg. Shortening and rounding the nose of the model delayed these out-of-trim yawing moments to slightly higher angles of attack. Both models were directionally unstable above an angle of attack of about 20 deg, but both had positive effective dihedral over virtually the entire angle-of-attack range. At the higher angles of attack the pointed-nose model had generally better damping in roll than that of the rounded-nose model. Both models had very high damping in yaw at an angle of attack of about 50 deg or 60 deg.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-1-22-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-15
    Description: Results of analytical and flight studies are presented to indicate the effect of yaw damping on the airplane motions and the vertical-tail loads in rough air. The analytical studied indicate a rapid reduction in loads on the vertical tail as the damping is increased up to the point of damping the lateral motions to 1/2 amplitude in one cycle. Little reduction in load is obtained by increasing the lateral damping beyond that point. Flight measurements made in rough air at 5,000 and 35,000 feet on a large swept-wing bomber equipped with a yaw damper show that the yaw damper decreased the loads on the vertical tail by about 50 percent at 35,000 feet. The reduction in load at 5,000 feet was not nearly as great. Measurements of the pilot's ability to damp the lateral motions showed that the pilot could provide a significant amount of damping but that manual control was not as effective as a yaw damper in reducing the loads.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-2-17-59L , L-433
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-15
    Description: A method has been described for predicting the probable relative severity of pitch-up of a new airplane design prior to initial flight tests. An illustrative example has been presented which demonstrated the use of this procedure for evaluating the pitch-up behavior of a large, relatively flexible airplane. It has also been shown that for airplanes for which a mild pitch-up tendency is predicted, the wing and tail loads likely to be encountered in pitch-up maneuvers would not assume critical values, even for pilots unfamiliar with pitch-up.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-7-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-15
    Description: Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-14-59A , A-138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-15
    Description: A theoretical investigation was conducted to determine the effects of body boundary-layer separation resulting from a highly underexpanded jet on the dynamic stability of a typical rocket aircraft during an atmospheric exit trajectory. The particular flight condition studied on a digital computer for five degrees of freedom was at Mach 6.0 and 150,000 feet. In view of the unknown character of the separated flow field, two estimates of the pressures in the separated region were made to calculate the unbalanced forces and moments. These estimates, based on limited fundamental zero-angle-of-attack studies and observations, are believed to cover what may be the actual case. In addition to a fixed control case, two simulated pilot control inputs were studied: rate-limited and instantaneous responses. The resulting-motions with and without boundary-layer separation were compared for various initial conditions. The lower of the assumed misalinement forces and moments led to a situation whereby a slowly damped motion could be satisfactorily controlled with rate-limited control input. The higher assumption led to larger amplitude, divergent motions when the same control rates were used. These motions were damped only when the instantaneous control responses were assumed.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-22-59E , E-161
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-15
    Description: High-altitude turbojet performance is adversely affected by the effects of low air density. This performance loss is evaluated as a Reynolds number effect, which represents the increased significance of high fluid viscous forces in relation to dynamic fluid forces as the Reynolds number is decreased. An analytical and experimental investigation of the effects of low Reynolds number operation on a single-stage, high-work-output turbine with a downstream stator was carried out at Reynolds numbers of 182,500, 39,600, and 23,000, based on average rotor-design flow conditions. At low Reynolds numbers and turbulent flow conditions, increased viscous losses caused decreased effective flow area, and thus decreased weight flow, torque, and over-all efficiency at a given equivalent speed and pressure ratio. Decreasing the Reynolds number from 182,500 to 23,000 at design equivalent speed resulted in a 5.00-point loss in peak over-all turbine efficiency for both theory and experiment. The choking equivalent weight flow decreased 2.30 percent for these conditions. Limiting loading work output was reached at design equivalent speed for all three Reynolds numbers. The value of limiting loading work output at design speed decreased 4.00 percent as Reynolds number was decreased from 182,500 to 23,000. A theoretical performance-prediction method using basic boundary-layer relations gave good agreement with experimental results over most of the performance range at a given Reynolds number if the experimental and analytical design operating conditions were carefully matched at the highest Reynolds number with regard to design performance parameters. High viscous losses in the inlet stator and rotor prevented the attainment of design equivalent work output at the lowest Reynolds number of 23,000.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-X-9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-17
    Description: An investigation has been conducted to determine the longitudinal stability and control characteristics of a reentry configuration at a Mach number of 2.01. The configuration consisted of clipped delta wing with hinged wing-tip panels. The results indicate that deflecting the wing-tip panels from a position normal to the wing chord plane to a position coincident with the wing chord plane resulted in a stabilizing change in the pitching-moment characteristics but did not significantly affect the nonlinearity of the pitching-moment variation with angle of attack. The trailing-edge controls were effective in producing pitching moment throughout the angle-of-attack range for control deflections up to at least 600. The control deflection required for trim, however, varied nonlinearly with angle of attack. It would appear that this nonlinearity as well as the maximum deflection required for trim could be greatly decreased by utilizing a leading-edge control in conjunction with a trailing-edge control.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-178
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-16
    Description: An F-86E airplane, in which servo actuation of the ailerons and rudder provides artificial variation of the important lateral and directional aerodynamic stability parameters, has been flown by test pilots of the NASA, U.S. Air Force, and one aircraft manufacturer to determine satisfactory and acceptable levels of lateral oscillatory damping in the landing approach. In addition to normal operational use, particular consideration was given to the emergency condition of failure of stability-augmentation equipment. In this study, the pilots' opinions of the airplane dynamic stability and control characteristics in smooth and simulated rough air have been recorded according to a numerical rating scale. The results are presented in the form of boundaries in terms of cycles to damp to half amplitude, 1/C(sub 1/2), or time to damp to half amplitude, 1/T(1/2) and bank-to-sideslip ratio, and are discussed in relation to existing flying-qualities criteria. Though the present results, which were obtained at 170 knots indicated airspeed and 10,000-feet altitude, indicated that increased damping is required with increased bank-to-sideslip ratio (as found in previous work), consideration of the dampers-failed condition indicated a great reduction in the minimum acceptable damping. At moderate values of bank-to-sideslip ratio, effects of lateral-oscillation period on pilot-opinion variation with damping appeared to be taken into account by use of the parameter 1/T(sub 1/2).
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-10-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-16
    Description: An investigation has been made utilizing a three-blade, 10-foot- diameter, supersonic-ty-pe propeller to determine propeller flutter characteristics. The particular flutter characteristics of interest were (1) the effect of stall flutter on a propeller operating in positive and negative thrust, (2) the effect of stall flutter on a propeller operating with the thrust axis inclined, and (3) the variation of vibratory blade shear stresses as the stall flutter boundary is penetrated and exceeded. Thrust and power measurements were made for all test conditions. Wake and inflow surveys were made when appropriate, to define the thrust and torque distributions and the magnitude of the inflow velocity. Stress measurements were made simultaneously to obtain the propeller flutter and bending response. It was found when operating both in the positive and negative thrust regions that, for most cases after the onset of flutter, the magnitude of the flutter stresses at first increased rapidly with section blade angle P, after which further increases in 0 resulted in only a moderate increase or a reduction in stress. Thrust-axis inclination up to the limit of the tests (angle of attack of 15 deg and dynamic pressure of 40 psf) appeared to have no effect on stall flutter. The stall flutter stresses were found to be directly associated with the section thrust characteristics of the blades. The onset of flutter was found to occur simultaneously with the divergence of the section thrust variation with blade angle from linearity for stations outboard of the blade 0.8-radius station. The maximum flutter stresses appeared to be a function of the maximum section thrust obtained at or in the vicinity of the blade 0.8-radius station. In an attempt to correlate two-dimensional airfoil data with three-dimensional data to predict the stall angle of attack (divergence of the section thrust) of the blade sections, it was found that no consistent correlation could be obtained. Also, a knowledge of the inflow conditions appeared to be insufficient to account for differences in airfoil characteristics between the two-dimensional and the three-dimensional cases.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-3-9-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-16
    Description: Subsonic span loads and the resulting stability derivatives have been calculated using the discrete-horseshoe-vortex method for a systematic series of horizontal tails in combination with a vertical tail of aspect ratio 1.0 in order to provide information on the effect of varying the chord of the horizontal tail for isolated tail assemblies performing sideslip and steady-roll motions. In addition, the effects of horizontal-tail dihedral angle for the sideslip case were obtained. Each tail surface considered had a taper ratio of 0.5 and an unswept quarter-chord line. The investigation covered variations in horizontal-tail chord, horizontal-tail span, and vertical location of the horizontal tail. The span loads and the resulting total stability derivatives as well as the vertical- and horizontal-tail contributions to these tail-assembly derivatives are presented in the figures for the purpose of showing the influence of the geometric variables. The results of this investigation showed trends that were in agreement with the results of previous investigations for variations in horizontal-tail span and vertical location of the horizontal tail. Variations in horizontal-tail chord expressed herein in terms of the root-chord ratio, that is, the ratio of horizontal-tail root chord to vertical-tail root chord, were found to have a pronounced influence on most of the span loads and the resulting stability derivatives. For most of the cases considered, the rate of change of the span load coefficients and the stability derivatives with the root-chord ratio was found to be a maximum for small values of root-chord ratio and to decrease as root-chord ratio increased.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-1-59L , L-216
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-16
    Description: Five engine tests were conducted to definitely establish the failure mechanism of leading-edge cracking and to determine which conditions of engine operation cause the failures. Five groups of S-616 and M-252 buckets from master lots were run consecutively in the same J47-25 engine. The tests included a steady-state run at full-power conditions, rapid cycling between idle and rated speed, and three different start-stop tests. The first start-stop test consisted of cycles of start and stop with 5 minutes of idle speed before each stop; the second included cycles of start and stop but with 15 minutes of rated speed before each stop; the third consisted of cycles of gradual starts and normal stops with 5 minutes at idle speed before each stop. The test results demonstrated that the primary cause of leading-edge cracking was thermal fatigue produced by repeated engine starts. The leading edge of the bucket experiences plastic flow in compression during starts and consequently is subjected to a tensile stress when the remainder of the bucket becomes heated and expands. Crack initiation was accelerated when rated-speed operation was added to each normal start-stop cycle. This acceleration of crack formation was attributed to localized creep damage and perhaps to embrittlement resulting from overaging. It was demonstrated that leading-edge cracking can be prevented simply by starting the engine gradually.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-7-59E , E-281
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-16
    Description: An examination of oscillatory stability for a straight-winged airplane with large concentrated wing-tip masses was made using wing-bending and airplane-pitching degrees of freedom and considering only quasi-steady aerodynamic forces. It was found that instability caused by coupling of airplane pitching and wing bending occurred for large ratios of effective wing-tip mass to total airplane mass and for coupled wing-bending frequencies near or below the uncoupled pitching frequency. Boundaries for this instability are given in terms of two quantities: (1) the ratio of effective tip mass to airplane mass, which can be estimated, and (2) the ratio of the coupled bending frequency to the uncoupled pitch frequency, which can be measured in flight. These boundaries are presented for various values of several airplane parameters.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-29-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-16
    Description: The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-5-20-59A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-16
    Description: In order to determine the effect of a low design diffusion factor on the performance of a transonic axial-flow compressor rotor, a high-specific-flow rotor with a 0.35 hub-tip radius ratio was designed, fabricated and tested. This rotor used a design tip diffusion factor of 0.20 with a design corrected specific weight flow of 40 pounds per second per square foot of frontal area, a total-pressure ratio of 1.27, and an adiabatic efficiency of 0.96. The design, rotor performance, and blade element performance are presented with a discussion on rotor shock losses and a comparison with a similarly designed rotor with a tip diffusion factor of 0.35. At the design corrected tip speed of 1100 feet per second, a peak rotor adiabatic efficiency of 0.88 was attained at a corrected specific weight flow of 39 pounds per second per square foot of frontal area with a mass-averaged total-pressure ratio of 1.27. The blade element tip diffusion factor was 0.281, which is 0.08 higher than the design value of 0.20. Peak efficiencies of 0.95, 0.91, 0.89, and 0.85 were obtained at 70, 80, 90, and 110 percent of design speed, respectively. Comparison of the performance of the rotor reported herein and a similarly designed rotor with increased blade loading indicates that higher blade loading results in a more desirable rotor because of a higher pressure ratio and equivalent efficiency. Computed values of shock losses at the rotor tip section indicate that the losses at peak efficiency are primarily a function of shock losses since the profile losses are only a small percentage of the total loss.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-X-86
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-16
    Description: An investigation to determine the low-speed rolling, yawing, and sideslipping derivatives of a 1/7-scale model which was used to represent the original configuration and a modified configuration of the North American X-15 airplane has been conducted in the Langley free-flight tunnel. The original model was modified to approximately represent the final airplane configuration by reducing the size of the fuselage side fairings and changing the vertical-tail arrangement. The effects of various tail arrangements were determined for both configurations and the effect of small forebody strakes was determined for the modified configuration only.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-144
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-16
    Description: A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-X-199
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-16
    Description: A transonic flutter investigation has been made of models of the T-tail of the Blackburn NA-39 airplane. The models were dynamically and elastically scaled from measured airplane data in accordance with criteria which include a flutter safety margin. The investigation was made in the Langley transonic blowdown tunnel and covered a Mach number range from 0.73 to 1.09 at simulated altitudes extending to below sea level. The results of the investigation indicated that, if differences between the measured model and scaled airplane properties are disregarded, the airplane with the normal value of stabilizer pitching stiffness should have a stiffness margin of safety of at least 32 percent at all Mach numbers and altitudes within the flight boundary. However, the airplane with the emergency value of stabilizer pitching stiffness would not have the required margin of safety from symmetrical flutter at Mach numbers greater than about 0.85 at low altitudes. First-order corrections for some differences between the measured model and scaled airplane properties indicated that the airplane with the normal value of stabilizer pitching stiffness would still have an adequate margin of safety from flutter and that the flutter safety margin for the airplane with the emergency value of stabilizer pitching stiffness would be changed from inadequate to adequate. However, the validity of the corrections is questionable.
    Keywords: Aircraft Stability and Control
    Type: NASA-TM-SX-242 , L-648
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-15
    Description: An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01 to determine the effects of forebody deflection on the stability and control characteristics of a canard airplane configuration. The configuration had a high trapezoidal aspect-ratio-3 wing, a trapezoidal canard surface, and a single swept vertical tail. Forebody deflection angles of 0 deg, 2 deg and deg were investigated. The results indicated that nose-up deflections of the forebody provided positive increments of pitching moment with little increase in drag and hence would be useful in reducing the pitch-control requirements and the attendant losses in lift-drag ratio due to trimming. Deflection of the forebody, however, aggravated the decrease in directional stability with increasing angle of attack by causing a loss in tail contribution and by increasing the instability of the wing-body combination.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-4-4-59L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-15
    Description: A study of some of the important aerodynamic factors affecting the directional stability of supersonic airplanes is presented. The mutual interference fields between the body, the lifting surfaces, and the stabilizing surfaces are analyzed in detail. Evaluation of these interference fields on an approximate theoretical basis leads to a method for predicting directional stability of supersonic airplanes. Body shape, wing position and plan form, vertical tail position and plan form, and ventral fins are taken into account. Estimates of the effects of these factors are in fair agreement with experiment.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-1-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-15
    Description: An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-11-4-58L , L-120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: Average spanwise blade temperatures and cooling-air pressure losses through a small (1.4-in, span, 0.7-in, chord) air-cooled turbine blade were calculated and are compared with experimental nonrotating cascade data. Two methods of calculating the blade spanwise metal temperature distributions are presented. The method which considered the effect of the length-to-diameter ratio of the coolant passage on the blade-to-coolant heat-transfer coefficient and assumed constant coolant properties based on the coolant bulk temperature gave the best agreement with experimental data. The agreement obtained was within 3 percent at the midspan and tip regions of the blade. At the root region of the blade, the agreement was within 3 percent for coolant flows within the turbulent flow regime and within 10 percent for coolant flows in the laminar regime. The calculated and measured cooling-air pressure losses through the blade agreed within 5 percent. Calculated spanwise blade temperatures for assumed turboprop engine operating conditions of 2000 F turbine-inlet gas temperature and flight conditions of 300 knots at a 30,000-foot altitude agreed well with those obtained by the extrapolation of correlated experimental data of a static cascade investigation of these blades.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E58E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-27
    Description: Two short turbojet combustors designed for use with vaporized hydrocarbon fuels were tested in a one-quarter annular duct. The experimental combustors consisted of many small "swirl-can" combustor elements manifolded together. This design approach allowed the secondary mixing zone to be considerably reduced over that of conventional combustors. The over-all combustion lengths, for the two configurations were 13.5 and 11.0 inches, approximately one-half the length of the shortest conventional combustors. These short combustors did not provide combustion efficiencies as high as those for conventional combustors at low pressures. However, over the range of combustor-inlet total-pressures expected in aircraft capable of flight at Mach numbers of 2.5 and above, these short combustors gave very high efficiencies. A combustion efficiency of 97 percent was obtained at a combustor-inlet total-pressure of 25.0 inches of mercury absolute, reference velocity of 120 feet per second, and inlet-air total temperature of 1160 deg R. By proportioning the fuel flow between the manifold rows of can combustor elements, control of the combustor-outlet radial total-temperature profile was demonstrated. Combustor totalpressure loss varied from 0.75 percent of the inlet total pressure at isothermal conditions and a reference velocity of 75 feet per second to 5.5 percent at a total-temperature ratio of 1.8 and a reference velocity of 180 feet per second.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57J03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-27
    Description: This analysis investigates the application of gas turbine engines at a cruise Mach number of 4.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-X-60935 , NACA-C-8548
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-11
    Description: A program was conducted in an altitude facility at the NACA Lewis laboratory to investigate the effects of rapid inlet pressure oscillations on the operation of a current turbo jet engine. These pressure oscillations were approximately sinusoidal in form and were generated to cover a frequency range of 2 to 75 cycles per second and an amplitude range of 10 to 70 percent of the free-stream total pressure. As the oscillation progressed through the compressor, the amplitude was attenuated considerably and a relatively large phase shift (lag) occurred. Engine stall limits obtained during pressure oscillations differed from quasi-steady-state stall limits as defined by over-all compressor pressure ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E58A03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-16
    Description: A lightweight turbine rotor assembly was devised, and components were evaluated in a full-scale jet engine. Thin sheet-metal airfoils were brazed to radial fingers that were an integral part of a number of thin disks composing the turbine rotor. Passages were provided between the disks and in the blades for air cooling. The computed weight of the assembly was 50 percent less than that of a similar turbine of normal construction used in a conventional turbojet engine. Two configurations of sheet-metal test blades simulating the manner of attachment were fabricated and tested in a turbojet engine at rated speed and temperature. After 8-1/2 hours of operation pieces broke loose from the tip sections of the better blades. Severe cracking produced by vibration was determined as the cause of failure. Several methods of overcoming the vibration problem are suggested.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-10-5-58E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-15
    Description: An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics in pitch and sideslip of a generalized canard airplane model. Two wings of equal area but differing in plan form were investigated. The model was equipped with a trapezoidal canard surface with an area 12 percent of the wing area, a low-aspect-ratio vertical tail, and twin ventral fins. The interference effects of the canard wake on the wing result in little or no gain in the total lift at a Mach number of 1.41 but at a Mach number of 2.01 a substantial portion of the canard lift is retained with a resultant increase in total lift. Because these interference effects of the canard wake appear to be concentrated near the leading edge of the wing, the proper location of the wing leading edge with respect to the center of moments may result in a substantial increase in the moment increment provided by a canard surface even though the total lift provided by the canard is small. For these configurations the trapezoidal wing retained the most lift and had the largest favorable moment increment produced by the canards. The canard configurations have the same characteristic decrease in directional-stability with angle of attack as most conventional high-fineness-ratio supersonic configurations. Although the presence of the canard surface caused a small increase in the directional stability at a Mach number of 1.41 for the delta-wing configuration, the presence of the canards resulted in small decreases in the directional-stability level at a Mach number of 2.01 for both wing configurations. A canard deflection of 15 deg provides an increase in the positive effective dihedral approximately as large as that provided by the presence of the vertical tail. This effect of canard deflection might complicate the lateral-control problem in the case of a rolling pull-up maneuver.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-10-1-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-11
    Description: A theoretical method is presented for predicting the dynamic lateral stability characteristics of an airplane towed in tandem by a much larger airplane. Values of period and time to damp to one-half amplitude and rolling motions calculated by an analog computer have been correlated with results of two experimental investigations conducted in the Langley free-flight tunnel which were part of a U.S. Air Force program (Project FICON) to develop a satisfactory arrangement by which a bomber could tow a parasite fighter. In general, the theoretical results agree with the experimental results.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL55D18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: The performance and operational characteristics of two afterburner configurations for the Iroquois turbojet engine were evaluated in an altitude test chamber over a range of afterburner equivalence ratios at afterburner-inlet pressures from 733 to 3186 pounds per square foot absolute. These conditions correspond to an altitude range from 38,700 to 66,800 feet at a flight Mach number of 1.5. The only difference between the two afterburner configurations was in the pattern of afterburner fuel injection. At an afterburner-inlet pressure of approximately 3100 pounds per square foot absolute, corresponding to an altitude of 38,700 feet and a_ flight Mach number of 1.5, the combustion efficiency of both configurations reached peak values of 0.80 to 0.85 at equivalence ratios of 0.35 to 0.40. However, further reduction in the afterburner-inlet pressure severely affected combustion efficiency. For example, at an afterburner inlet pressure level of 700 to 1000 pounds per square foot absolute, the efficiency for both configurations was 0.20 to 0.40.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE58G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-15
    Description: An investigation of the low-speed static stability and control characteristics of 1/4-scale models of two configurations suitable for lifting reentry from satellite orbit has been made in the Langley free- flight tunnel. One of the models was a thick, all-wing configuration having a delta plan form and the other was a flat delta wing with a half-cone fuselage. The investigation showed that, in general, the all-wing configuration had better longitudinal and lateral stability characteristics than the flat delta configuration.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-10-22-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-15
    Description: A flight investigation was made to obtain experimental information on the handling qualities of a normal-acceleration type of automatic longitudinal control system. The control system was installed in a subsonic fighter-type airplane. In hands-off (stick-free) flight the normal-acceleration control system attempted to regulate the normal acceleration to a constant value which is dependent on the automatic-control-system trim setting. In maneuvering flight a given pilot's stick deflection produced a proportional change in normal acceleration, the change in acceleration being independent of flight condition. A small side-located controller stick was used by the pilot to introduce signals into the automatic control system. In the flight program emphasis was placed on the acceleration-limiting capabilities of the control system. The handling qualities were investigated in maneuvers such as slow and rapid pull-ups and turns and also in flight operations such as cruising, stalls, landings, aerobatics, and air-to-air tracking. Good acceleration limiting was obtained with the normal-acceleration control system by limiting the magnitude of the input signal that the pilot could introduce into the control system. The same values of control-system gain settings could be used from an acceleration-limiting stand-point at both 10,000 and 30,000 feet for the complete speed range of the airplane. The response characteristics of the airplane-control system combination were also satisfactory at both high and low altitude with these same values of control-system gain setting. In the pilot's opinion, the normal-acceleration control system provided good stability and control characteristics in flight operations such as cruising, stalls, landings, aerobatics, and air-to-air tracking.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-1-10-26-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-16
    Description: Methods are presented for estimating the directional stability derivative increments contributed by the stabilizing surfaces of subsonic and supersonic aircraft. These methods are strictly applicable at zero angle of attack and small angles of sideslip. The procedure of totaling the incremental coefficients to obtain an estimation of the total empennage side-force and yawing-moment coefficient derivatives is also shown, together with numerical examples. A correlation is presented between estimated and experimental incremental coefficients which indicates that the methods of this report generally estimate the increment of side force gained by the addition of a panel to within +/-10 percent of the experimental value while the yawing-moment increment is generally estimated to within +/-20 percent. This is true for both subsonic and supersonic Mach numbers. An example application of the methods to one of the problems in directional stability, that of minimizing the effect of Mach number on the side-force coefficient derivative of the empennage, is discussed.
    Keywords: Aircraft Stability and Control
    Type: NASA-MEMO-12-2-58A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-11
    Description: The multistage turbine from the J73 turbojet engine has previously been investigated with standard and with reduced-chord rotor blading in order to determine the individual performance characteristics of each configuration over a range of over-all pressure ratio and speed. Because both turbine configurations exhibited peak efficiencies of over 90 percent, and because both units had relatively wide efficient operating ranges, it was considered of interest to determine the performance of the first stage of the turbine as a separate component. Accordingly, the standard-bladed multistage turbine was modified by removing the second-stage rotor disk and stator and altering the flow passage so that the first stage of the unit could be operated independently. The modified single-stage turbine was then operated over a range of stage pressure ratio and speed. The single-stage turbine operated at a peak brake internal efficiency of over 90 percent at an over-all stage pressure ratio of 1.4 and at 90 percent of design equivalent speed. Furthermore, the unit operated at high efficiencies over a relatively wide operating range. When the single-stage results were compared with the multistage results at the design operating point, it was found that the first stage produced approximately half the total multistage-turbine work output.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E53L28A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-11
    Description: The present investigation was conducted in the Langley high-speed 7-by 10-foot tunnel to determine the static longitudinal and lateral stability characteristics at high subsonic speeds of two canard airplane configurations previously tested at supersonic speeds. The Mach number range of this investigation extended from 0.60 to 0.94 and a maximum angle-of-attack range of -2dewg to 24deg was obtained at the lowest test Mach number. Two wing plan forms of equal area were studied in the present tests; one was a 60deg delta wing and the other was a trapezoid wing having an aspect ratio of 3, taper ratio of 0.143, and an unswept 80-percent-chord line. The canard control had a trapezoidal plan form and its area was approximately 11.5 percent of the wing area. The model also had a low-aspect-ratio highly swept vertical tail and twin ventral fins. The longitudinal control characteristics of the models were consistent with past experience at low speed on canard configurations in that stalling of the canard surface occurred at moderate and high control deflections for moderate values of angle of attack. This stalling could impose appreciable limitations on the maximum trim-lift coefficient attainable. The control effectiveness and maximum value of trim-lift was significantly increased by addition of a body flap having a conical shape and located slightly behind the canard surface on the bottom of the body. Addition of the canard surface at 0deg deflection had relatively little effect on overall directional stability of the delta-wing configuration; however, deflection of the canard surface from 0deg to 10deg had a large favorable effect on directional stability at high angles of attack for both the trapezoid- and delta-wing configurations.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L57J08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-11
    Description: Internal performance of an XJ79-GE-1 variable ejector was experimentally determined with the primary nozzle in two representative after-burning positions. Jet-thrust and air-handling data were obtained in quiescent air for 4 selected ejector configurations over a wide range of secondary to primary airflow ratios and primary-nozzle pressure ratios. The experimental ejector data are presented in both graphical and tabulated form.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57F25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-11
    Description: Nine divergent-shroud ejector configurations were investigated to determine the effect of shroud divergence angle on ejector internal performance. Unheated dry air was used for both the primary and secondary flows. The decrease in the design-point thrust coefficient with increasing flow divergence angle (angle measured from primary exit to shroud exit) followed very closely a simple relation involving the cosine of the angle. This indicates that design-point thrust performance for divergent-shroud ejectors can be predicted with reasonable accuracy within the range investigated. The decrease in design-point thrust coefficient due to increasing the flow divergence engle from 120deg to 30deg (half-singles) was approximately 6 percent. Ejector air-handling characteristics and the primary-nozzle flow coefficient were not significantly affected by change in shroud divergence angle.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57F13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-11
    Description: A two-spool turbojet engine was operated in the Lewis altitude wind tunnel to study the inception of compressor surge. In addition to the usual steady-state pressure and temperature measurements, the compressors were extensively instrumented with fast-response interstage pressure transducers. Thus it was possible to obtain maps for both compressors, pressure oscillations during rotating stall, effects of stall on efficiency, and stage-loading curves. In addition, with the transient measurements, it was possible to record interstage pressures and then compute stage performance during accelerations to the stall limit. Rotating stall was found to exist at low speeds in the outer spool. Although the stall arose from poor flow conditions at the inlet-stage blade tips, the low-energy air moved through the machine from the tip at the inlet to the outer spool to the hub at the inlet to the inner spool. This tip stall ultimately resulted in compressor surge in the mid-speed region, and necessitated inter-compressor air bleed. Interstage pressure measurements during acceleration to the compressor stall limit indicated that rotating stall was not a necessary condition for compressor surge and that, at the critical stall point, the circumferential interstage pressure distribution was uniform. The exit-stage group of the inner spool was first t o stall; then, the stages upstream stalled in succession until the inlet stage of the outer spool was stalled. With a sufficiently high fuel rate, the process repeated with a cycle time of about 0.1 second. It was possible to construct reproducible stage stall lines as a function of compressor speed from the stage stall points of several such compressor surges. This transient stall line was checked by computing the stall line from a steady-state stage-loading curve. Good agreement between the stage stall lines was obtained by these two methods.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57I27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: The static longitudinal and lateral stability charaetefistics of an 0 .065-scale model of the XRSSM-N-9a (REGULUS II) Missile at Mach number range of 1.6 to 2.0 at a Reynolds number per foot of 2.0(exp 8)
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SA57F06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: The performance characteristics of the 19B-8 and 19XB-1 turbojet engines and the windmilling-drag characteristics of the 19B-6 engine were determined in the Cleveland altitude wind tunnel. The investigations were conducted on the 19B-8 engine at simulated altitudes from 5000 to 25,000 feet with various free-stream ram-pressure ratios and on the 19XB--1 engine at simulated altitudes from 5000 to 30,000 feet with approximately static free-stream conditions. Data for these two engines are presented to show the effect of altitude, free-stream ram-pressure ratio, and tail-pipe-nozzle area on engine performance. A 21-percent reduction in tail-pipe-nozzle area of the 19B-8 engine increased the let thrust 43 percent the net thrust 72 percent, and the fuel consumption 64 percent. An increase in free-stream ram-pressure ratio raised the jet thrust and the air flow and lowered the net thrust throughout the entire range of engine speeds for the 19B-8 engine. At similar operating conditions, the corrected jet thrust and corrected air flow were approximately the same for both engines, and the corrected specific fuel consumption based on jet thrust was lower for the 19XB-1 engine than for the 19B-8 engine. The thrust and air-flow data obtained with both engines at various altitudes for a given free-stream rampressure ratio were generalized to standard sea-level atmospheric conditions. The performance parameters involving fuel consumption generalized only at high engine speeds at simulated altitudes as high as 15,000 feet. The windmilling drag of the 19B-8 engine increased rapidly as the airspeed was increased.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7C13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This document contains reproductions of technical papers on some of the most recent research results on aircraft loads, flutter, and structures from the NACA laboratories. These papers were presented by members of the staff of the NACA laboratories at the Conference held at the Langley Aeronautical Laboratory March 5, 6, and 7, 1957. The primary purpose of this Conference was to convey to contractors of the military services and others concerned with the design of aircraft these recent research results and to provide those attending an opportunity to discuss the results. The papers in this document are in the same form in which they were presented at the Conference in order to facilitate their prompt distribution. The original presentation and this record are considered as complementary to, rather than as substitutes for, the Committee?s more complete and formal reports. Accordingly, if information from this document is utilized it is requested that this document not be listed as a reference. Individual reports dealing with most of the information presented at the Conference will subsequently be published by NACA and will therefore be suitable as reference material.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-X-67367 , NACA-CONF-1957 , NACA Conference on Aircraft Loads, Structures, and Flutter; Mar 05, 1957 - Mar 07, 1957; Langley Field, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-04-01
    Description: Afterburners for turbojet engines have, within the past decade, found increasing application in service aircraft. Practically all engines manufactured today are equipped with some form of afterburner, and its use has increased from what was originally a short-period thrust-augmentation application to an essential feature of the turbojet propulsion system for flight at supersonic speeds. The design of these afterburners has been based on extensive research and development effort in expanded laboratory facilities by both the NACA and the American engine industry. Most of the work of the engine industry, however, has either not been published or is not generally available owing to its proprietary nature. Consequently, the main bulk of research information available for summary and discussion is of NACA origin. However, because industrial afterburner development has closely followed NACA research, the omission is more one of technical detail than method or concept. One principal difficulty encountered in summarizing the work in this field is that sufficient knowledge does not yet exist to rationally or directly integrate the available background of basic combustion principles into combustor design. A further difficulty is that most of the experimental investigations that have been conducted were directed chiefly toward the development of specific afterburners for various engines rather than to the accumulation of systematic data. This work has, nonetheless, provided not only substantial improvements in the performance of afterburners but also a large fund of experimental data and an extensive background of experience in the field. Consequently, it is the purpose of the present chapter to summarize the many, and frequently unrelated, experimental investigations that have been conducted rather than to formulate a set of design rules. In the treatment of this material an effort has been made, however, to convey to the reader the "know how" acquired by research engineers in the course of afterburner studies.
    Keywords: Aircraft Propulsion and Power
    Type: Adaptation of Combustion Principles to Aircraft Propulsion. Volume II - Combustion in Air-Breathing Jet Engines
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-04-01
    Description: In the early development of jet engines, it was occasionally found that excessive amounts of coke or other carbonaceous deposits were formed in the combustion chamber. Sometimes a considerable amount of smoke was noted in the-exhaust gases. Excessive coke deposits may adversely affect jet-engine performance in several ways. The formation of excessive amounts of coke on or just downstream of a fuel nozzle (figs. 116(a) and (b)) changes the fuel-spray pattern and possibly affects combustor life and performance. Similar effects on performance can result from the deposition of coke on primary-air entry ports (fig. 116(c)). Sea-level or altitude starting may be impaired by the deposition of coke on spark-plug electrodes (fig. 116(b)), deposits either grounding the electrodes completely or causing the spark to occur at positions other than the intended gap. For some time it was thought that large deposits of coke in turbojet combustion chambers (fig. 116(a)) might break away and damage turbine blades; however, experience has indicated that for metal blades this problem is insignificant. (Cermet turbine blades may be damaged by loose coke deposits.) Finally, the deposition of coke may cause high-temperature areas, which promote liner warping and cracking (fig. 116(d)) from excessive temperature gradients and variations in thermal-expansion rates. Smoke in the exhaust gases does not generally impair engine performance but may be undesirable from a tactical or a nuisance standpoint. Appendix B of reference 1 and references 2 to 4 present data obtained from full-scale engines operated on test stands and from flight tests that indicate some effects on performance caused by coke deposits and smoke. Some information about the mechanism of coke formation is given in reference 5 and chapter IX. The data indicate that (1) high-boiling fuel residuals and partly polymerized products may be mixed with a large amount of smoke formed in the gas phase to account for the consistency, structure, and chemical composition of the soft coke in the dome and (2) the hard deposits on the liner are similar to petroleum coke and may result from the liquid-phase thermal cracking of the fuel. During the early development period of jet engines, it was noted that the excessive coke deposits and exhaust smoke were generally obtained when fuel-oil-type fuels were used. Engines using gasoline-type fuels were relatively free from the deposits and smoke. These results indicated that some type of quality control would be needed in fuel specifications. Also noted was the effect of engine operating conditions on coke deposition. It is possible that, even with a clean-burning fuel, an excessive amount of coke could be formed at some operating conditions. In this case, combustor redesign could possibly reduce the coke to a tolerable level. This chapter is a summary of the various coke-deposition and exhaust-smoke problems connected- with the turbojet combustor. Included are (1) the effect of coke deposition on combustor life or durability and performance; (2) the effect of combustor design, operating conditions, inlet variables, and fuel characteristics on coke deposition; (3) elimination of coke deposits; (4) the effect of operating conditions and fuel characteristics on formation of exhaust smoke; and (5) various bench test methods proposed for determining and controlling fuel quality.
    Keywords: Aircraft Propulsion and Power
    Type: Adaptation of Combustion Principles to Aircraft Propulsion. Volume II - Combustion in Air-Breathing Jet Engines
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-04-01
    Description: Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.
    Keywords: Aircraft Propulsion and Power
    Type: Adaptation of Combustion Principles to Aircraft Propulsion. Volume II - Combustion in Air-Breathing Jet Engines
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-04-01
    Description: From considerations of safety and reliability in performance of gas-turbine aircraft, it is clear that engine starting and acceleration are of utmost importance. For this reason extensive efforts have been devoted to the investigation of the factors involved in the starting and acceleration of engines. In chapter III it is shown that certain basic combustion requirements must be met before ignition can occur; consequently, the design and operation of an engine must be tailored to provide these basic requirements in the combustion zone of the engine, particularly in the vicinity of the ignition source. It is pointed out in chapter III that ignition by electrical discharges is aided by high pressure, high temperature, low gas velocity and turbulence, gaseous fuel-air mixture, proper mixture strength, and-an optimum spark. duration. The simultaneous achievement of all these requirements in an actual turbojet-engine combustor is obviously impossible, yet any attempt to satisfy as many requirements as possible will result in lower ignition energies, lower-weight ignition systems, and greater reliability. These factors together with size and cost considerations determine the acceptability of the final ignition system. It is further shown in chapter III that the problem of wall quenching affects engine starting. For example, the dimensions of the volume to be burned must be larger than the quenching distance at the lowest pressure and the most adverse fuel-air ratio encountered. This fact affects the design of cross-fire tubes between adjacent combustion chambers in a tubular-combustor turbojet engine. Only two chambers in these engines contain spark plugs; therefore, the flame must propagate through small connecting tubes between the chambers. The quenching studies indicate that if the cross-fire tubes are too narrow the flame will not propagate from one chamber to another. In order to better understand the role of the basic factors in actual engine operation, many investigations have been conducted in single combustors from gas-turbine engines and in full-scale engines in altitude tanks and in flight. The purpose of the present chapter is to discuss the results of such studies and, where possible, to interpret these results qualitatively in terms of the basic requirements reported in chapter III. The discussion parallels the three phases of turbojet engine starting: (1) Ignition of the fuel-air mixture (2) Propagation of flame throughout the combustion zone (3) Acceleration of the engine to operating speed.
    Keywords: Aircraft Propulsion and Power
    Type: Adaptation of Combustion Principles to Aircraft Propulsion. Volume II - Combustion in Air-Breathing Jet Engines
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-04-01
    Description: Studies of the fundamental processes of combustion are usually concerned with wide ranges of investigation of individual processes. In general, each fundamental combustion process may be studied in an environment that is most suited to its evaluation and possibly unrelated basically to any practical application. The majority of the data presented in volume I of this series concern the fundamental aspects of combustion as functions of the individual occurrence of various contributing processes. In a jet engine, however, the various fundamental combustion processes may occur simultaneously and may interact. Furthermore, the engine environment usually does not permit independent variation of single combustion parameters, since specified operating conditions impose specific values on the parameters. In volume II, data are presented to show the effect of operating conditions on the over-all combustion process in different combustion components. To show the effect of operating conditions, it is necessary to specify the range of these conditions within which combustion components may operate. Therefore, this chapter presents only the operating conditions that might be required in the primary combustors and afterburners of typical current turbojet engines. (Corresponding information on ram-jet engines is presented in ch. xisi.) This chapter is not intended to serve as an explanation of engine operation. The operating conditions of the combustion components are presented in terms of total pressures and temperatures at the primary-combustor and afterburner inlets, reference velocities and outlet total temperatures of the primary combustors, and velocities at the plane of the flameholder in the afterburners. The data are presented to relate the operating regions of typical current turbojet combustion components to flight altitudes, Mach numbers, and modes of engine operation. Specifically, data are presented for the combustion parameters of the primary combustor and afterburner of three turbojet engines having rated compressor total-pressure ratios of 5, 8, and 12 under full-throttle conditions. Operational data for the primary combustor also include part-throttle operation at 70, 80, and 90 percent of rated engine speed and windmifling operation. The range of flight conditions includes altitudes from sea level to 65,000 feet and flight Mach numbers from zero to 1.6.
    Keywords: Aircraft Propulsion and Power
    Type: Adaptation of Combustion Principles to Aircraft Propulsion. Volume II - Combustion in Air-Breathing Jet Engines
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-11
    Description: Internal performance of an XJ79-GE-1 variable ejector was experimentally determined with the primary nozzle in a representative nonafterburning position. Jet-thrust and air-handling data were obtained in quiescent air for 11 selected ejector configurations over a wide range of operation. Additional data, at specific operating conditions, were obtained which indicate the ejector diameter ratio for peak jet-thrust performance. The experimental ejector data are presented in both graphical and tabulated form.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E56E23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-14
    Description: The ram jet is basically one of the most dimple types of aircraft engine. It consists only of an inlet diffuser, a combustion system, and an exit nozzle. A typical ram-jet configuration is shown in figure 128. The engine operates on the Brayton cycle, and ideal cycle efficiency depends only on the ratio of engine to ambient pressure. The increased, engine pressures are obtained by ram action alone, and for this reason the ram jet has zero thrust at zero speed. Therefore, ram-jet-powered aircraft must be boosted to flight speeds close to a Mach number of 1.0 before appreciable thrust is generated by the engine. Since pressure increases are obtained by ram action alone, combustor-inlet pressures and temperatures are controlled by the flight speed, the ambient atmospheric condition, and by the efficiency of the inlet diffuser. These pressures and temperatures, as functions of flight speed and altitude, are shown in figure 129 for the NACA standard atmosphere and for practical values of diffuser efficiency. It can be seen that very wide ranges of combustor-inlet temperatures and pressures may be encountered over the ranges of flight velocity and altitude at which ram jets may be operated. Combustor-inlet temperatures from 500 degrees to 1500 degrees R and inlet pressures from 5 to 100 pounds per square inch absolute represent the approximate ranges of interest in current combustor development work. Since the ram jet has no moving parts in the combustor outlet, higher exhaust-gas temperatures than those used in current turbojets are permissible. Therefore, fuel-air ratios equivalent to maximum rates of air specific impulse or heat release can be used, and, for hydrocarbon fuels, this weight ratio is about 0.070. Lower fuel-air ratios down to about 0.015 may also be required to permit efficient cruise operation. This fuel-air-ratio range of 0.015 to 0.070 used in ram jets can be compared with the fuel-air ratios up to 0.025 encountered in current turbojets. Ram-jet combustor-inlet velocities range from 150 to 400 feet per second. These high linear velocities combined with the relatively low pressure ratios obtainable in ram jets require that the pressure drop through the combustor be kept low to avoid excessive losses in cycle efficiency. It has been estimated that, for a long-range ram-jet engine, an increase in pressure loss of one dynamic head would require a compensating 1-percent increase in combustion efficiency. Therefore, combustor pressure-loss coefficients (pressure drop/impact pressure) of the order of 1 to 4 are found in most current engines. The operating conditions described impose major problems in the design of stable and efficient ram-jet combustion systems. This chapter presents a survey of ram-jet combustor research and, where possible, points out criteria that may be useful in the design of ram-jet combustion systems.
    Keywords: Aircraft Propulsion and Power
    Type: Adaptation of Combustion Principles to Aircraft Propulsion. Volume II - Combustion in Air-Breathing Jet Engines
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-11
    Description: Static longitudinal and lateral stability and control data are presented of an investigation on a l/15-scale model of the Goodyear XZP5K airship over a pitch and yaw range of +/-20 deg and 0 deg to 30 deg, respectively, for various rudder and elevator deflections. Two tail configurations of different plan forms were tested and wake and boundary-layer surveys were conducted. Testing was conducted in the Langley full-scale tunnel at a Reynolds number of approximately 16.5 x 10(exp 6) based on hull length, and corresponds to a Mach number of about 0.12.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL56A11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: The statistical approach to the gust-loads problem, which consists in considering flight though turbulent air to be a stationary random process, is extended by including the effect of lateral variations of the instantaneous gust intensity on the aerodynamic forces and on the resultant motions and stresses of rigid and flexible airplanes. By means of some calculations of normal and rolling accelerations, as well as of the root bending moment, it is shown that these effects may be significant for large airplanes.
    Keywords: Aircraft Stability and Control
    Type: Journal of Aeronautical Sciences; 23; 10; 917-930|Aeroelasticity Session; Jan 24, 1955 - Jan 27, 1955; New York, NY; United States|Annual Institute of the Aeronautical Sciences (IAS) Meeting; Jan 24, 1955 - Jan 27, 1955; New York, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: Good internal performance over a wide range of flight conditions can be obtained with either a plug nozzle or a variable ejector nozzle that can provide a divergent shroud at high pressure ratios. For both the ejector and the plug nozzle, external flow can sometimes cause serious drag losses and, for some plug-nozzle installations, external flow can cause serious internal performance losses. Plug-nozzle cooling and design of the secondary-air-flow systems for ejectors were also considered .
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E56A18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Some of the considerations involved in the design of aircraft fuel tanks for liquid hydrogen are discussed herein. Several of the physical properties of metals and thermal insulators in the temperature range from ambient to liquid-hydrogen temperatures are assembled. Calculations based on these properties indicate that it is possible to build a large-size liquid-hydrogen fuel tank which (1) will weigh less then 15 percent of the fuel weight, (2) will have a hydrogen vaporization rate less than 30 percent of the cruise fuel-flow rate, and (3) can be held in a stand-by condition and readied for flight in a short time.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E55F22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: A flight investigation was made at altitudes of 40,000, 25,000 and 15,000 feet to determine the horizontal-tail loads of the Bell X-5 research airplane at a sweep angle of 58.7 deg over the lift range of the airplane for Mach numbers from 0.61 to 1.00. The horizontal-tail loads were found to be nonlinear with lift throughout the lift ranges tested at all Mach numbers except at a Mach number of 1.00. The balancing tail loads reflected the changes which occur in the wing characteristics with increasing angle of attack. The nonlinearities were, in general, more pronounced at the higher angles of attack near the pitch-up where the balancing tail loads indicate that the wing-fuselage combination becomes unstable. No apparent effects of altitude on the balancing tail loads were evident over the comparable lift ranges of these tests at altitudes from 40,000 feet to 15,000 feet. Comparisons of balancing tail loads obtained from flight and windtunnel tests indicated discrepancies in absolute magnitudes, but the general trends of the data agree. Some differences in absolute magnitude may be accounted for by the tail load carried inboard of the strain-gage station and the load induced on the fuselage by the presence of the tail. These loads were not measured in flight.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-H55E20a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...