ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics  (76)
  • Aircraft Stability and Control  (35)
  • 1950-1954  (111)
  • 1
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-SL54F28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: During the flight program on the Bell X-5 airplane with 59 deg sweepback to determine the practical Mach number and normal-force coefficient limits of this configuration, a reduction in static longitudinal stability was encountered in maneuvering flight. A determination of the boundary for reduction of longitudinal stability extending to a Mach number of 0.98 is presented in this paper. A reduction of static longitudinal stability existed for all elevator and all stabilizer-executed maneuvers. The reduction of stability existed for maneuvers executed with elevator near a normal-force coefficient of 0.6 for a Mach number range of about 0.31 to 0.76. Above a Mach number of 0.76 the normal-force coefficient for reduction of stability gradually decreased to a value of 0.2 at a Mach number of 0.98. For stabilizer-executed maneuvers the stability boundary was the same as for elevator maneuvers up to a Mach number of 0.88. Above this Mach number the reduction of stability occurred at slightly higher normal-force coefficients decreasing from about 0.51 at a Mach number of 0.92 to a value of 0.311 at a Mach number of 0.97. The airplane has been flown to a Mach number of 1.04 at a normal-force coefficient of about 0.15 without encountering any reduction of stability. The pilot did not consider the reduction of stability to be dangerous at altitudes above 30,000 feet; however, precise flight was impossible. At angles of attack above that at which the reduction of longitudinal stability occurred, directional instability and aileron control overbalance were encountered.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L53A09b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52K18b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Flight measurements of the stability characteristics of the Bell X-5 research airplane at 59 deg sweepback were made in steady sideslips at Mach numbers from 0.62 to 0.97 at altitudes ranging between 35,000 and 40,000 feet. The results showed that the apparent directional stability was positive and increased at Mach numbers above 0.90. The apparent effective dihedral was positive and high, increasing at Mach numbers above 0.75. The cross-wind force coefficient per degree of sideslip was positive and increased rapidly at Mach numbers above 0.94.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52K13b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The transonic similarity rules have been applied to the correlation of experimental data for a series of 22 rectangular wings having symmetrical NACA 63A-series sections, aspect ratios from 1/2 to 6, and thicknesses from 2 to 10 percent. The data were obtained by use of the transonic bump technique over a Mach number range from 0.40 to 1.10, corresponding to a Reynolds number range from 1.25 to 2.05 million. The results show that it is possible to correlate experimental data throughout the subsonic, transonic, and moderate supersonic regimes by using the transonic similarity parameters in forms which are consistent with the Prandtl-Glauert rule of linearized theory. The multiple families of basic data curves for the various aspect ratios and thickness ratios have been summarized in single presentations involving only one geometric variable - the product of the aspect ratio and the l/3 power of the thickness ratio.
    Keywords: Aerodynamics
    Type: NACA-RM-A51L17b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
    Keywords: Aerodynamics
    Type: NACA-TN-2888
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A method is presented for the estimation of the subsonic-flight-speed characteristics of sharp-lip inlets applicable to supersonic aircraft. The analysis, based on a simple momentum balance consideration, permits the computation of inlet pressure recovery - mass-flow relations and additive-drag coefficients for forward velocities from zero to the speed of sound. The penalties for operation of a sharp-lip inlet at velocity ratios other than 1.0 may be severe; at lower velocity ratios an additive drag is incurred that is not cancelled by lip suction, while at higher velocity ratios, unavoidable losses in inlet total pressure will result. In particular, at the take-off condition, the total pressure and the mass flow for a choked inlet are only 79 percent of the values ideally attainable with a rounded lip. Experimental data obtained at zero speed with a sharp-lip supersonic inlet model were in substantial agreement with the theoretical results.
    Keywords: Aerodynamics
    Type: NACA-TN-3004
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Wake development behind circular cylinders at Reynolds numbers from 40 to 10,000 was investigated in a low-speed wind tunnel. Standard hotwire techniques were used to study the velocity fluctuations. The Reynolds number range of periodic vortex shedding is divided into two distinct subranges. At R = 40 to 150, called the stable range, regular vortex streets are formed and no turbulent motion is developed. The range R = 150 to 300 is a transition range to a regime called the irregular range, in which turbulent velocity fluctuations accompany the periodic formation of vortices. The turbulence is initiated by laminar-turbulent transition in the free layers which spring from the separation points on the cylinder. This transition first occurs in the range R = 150 to 300. Spectrum and statistical measurements were made to study the velocity fluctuations. In the stable range the vortices decay by viscous diffusion. In the irregular range the diffusion is turbulent and the wake becomes fully turbulent in 40 to 50 diameters downstream. It was found that in the stable range the vortex street has a periodic spanwise structure. The dependence of shedding frequency on velocity was successfully used to measure flow velocity. Measurements in the wake of a ring showed that an annular vortex street is developed.
    Keywords: Aerodynamics
    Type: NACA-TN-2913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A supersonic inlet with supersonic deceleration of the flow entirely outside of the inlet is considered. A particular arrangement with fixed geometry having a central body with a circular annular intake is analyzed, and it is shown theoretically that this arrangement gives high pressure recovery for a large range of Mach number and mass flow and therefore is practical for use on supersonic airplanes and missiles. For some Mach numbers the drag coefficient for this type of inlet is larger than the drag coefficient for the type of inlet with supersonic compression entirely inside, but the pressure recovery is larger for all flight conditions. The differences in drag can be eliminated for the design Mach number. Experimental results confirm the results of the theoretical analysis and show that pressure recoveries of 95 percent for Mach numbers of 1.33 and 1.52, 92 percent for a Mach number of 1.72, and 86 percent for a Mach number of 2.10 are possible, with the configurations considered. If the mass flow decreases, the total drag coefficient increases gradually and the pressure recovery does not change appreciably. The results of this work were first presented in a classified document issued in 1946.
    Keywords: Aerodynamics
    Type: NACA-TN-2286
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The hypersonic similarity law as derived by Tsien has been investigated by comparing the pressure distributions along bodies of revolution at zero angle of attack. In making these comparisons, particular attention was given to determining the limits of Mach number and fineness ratio for which the similarity law applies. For the purpose of this investigation, pressure distributions determined by the method of characteristics for ogive cylinders for values of Mach numbers and fineness ratios varying from 1.5 to 12 were compared. Pressures on various cones and on cone cylinders were also compared in this study. The pressure distributions presented demonstrate that the hypersonic similarity law is applicable over a wider range of values of Mach numbers and fineness ratios than might be expected from the assumptions made in the derivation. This is significant since within the range of applicability of the law a single pressure distribution exists for all similarly shaped bodies for which the ratio of free-stream Mach number to fineness ratio is constant. Charts are presented for rapid determination of pressure distributions over ogive cylinders for any combination of Mach number and fineness ratio within defined limits.
    Keywords: Aerodynamics
    Type: NACA-TN-2250
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-TN-2211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: The performance of NACA 65-series compressor blade section in cascade has been investigated systematically in a low-speed cascade tunnel. Porous test-section side walls and for high-pressure-rise conditions, porous flexible end walls were employed to establish conditions closely simulating two-dimensional flow. Blade sections of design lift coefficients from 0 to 2.7 were tested over the usable angle-of-attack range for various combinations of inlet-flow angle. A sufficient number of combinations were tested to permit interpolation and extrapolation of the data to all conditions within the usual range of application. The results of this investigation indicate a continuous variation of blade-section performance as the major cascade parameters, blade camber, inlet angle, and solidity were varied over the test range. Summary curves of the results have been prepared to enable compressor designers to select the proper blade camber and angle of attack when the compressor velocity diagram and desired solidity have been determined.
    Keywords: Aerodynamics
    Type: NACA-TR-1368 , NACA-RM-L51G31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: NACA instrumentation has been installed ii the X-J4 airplanes to obtain stability and control data during the acceptance tests conducted by the Northrop Aircraft Corporation. This report presents data obtained on the stalling characteristics of the airplane in the clean and gear- down configurations. The center of gravity was located at approximately 18 percent of the mean aerodynamic chord during the tests. The results indicated that the airplane was not completely stalled when stall was gradually approached during nominally U accelerated flight but that it was completely stalled during a more abruptly approached stall in accelerated flight. The stall in accelerated flight was relatively mild, and this was attributed to the nature of the variation of lift with angle of attack for the 001-614 airfoil section, the plan form of the wing, and to the fact that the initial sideslip at the stall produced (as shown by wind-tunnel tests of a model of the airplane) a more symmetrical stall pattern.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A50A04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-27
    Description: An investigation of the isothermal wake-flow characteristics of several flame-holder shapes was carried out in a 4- by 4-inch flow chamber. The effects of flame-holder-shape changes on the characteristics of the Karman vortices and thus on the recirculation zones to which experimenters have related the combustion process were obtained for several flame holders. The results may furnish a basis of correlation, of combustion efficiency and stability for similarly shaped flame holders in combustion studies. Values of the spacing ratio-(ratio of lateral spacing to longitudinal spacing of vortices] obtained for the various shapes approximated the theoretical value of 0.36 given by the Karman stability analysis. Variations in vortex strength of more than 200 percent and in frequency of more than 60 percent were accomplished by varying flame-holder shape. A maximum increase in the recirculation parameter of 56 percent over that for a conventional V-gutter was also obtained. Varying flameholder shape and size enables the designer to select many schedules of variations in vortex strength and frequency- not obtainable by changing size only and may make it possible to approach theoretical maximum vortex strength for any given frequency.
    Keywords: Aerodynamics
    Type: NACA-RM-E51K07 , E-2403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-27
    Description: An investigation has been conducted in the Langley 20-foot free spinning tunnel to study the relative behavior in descent of a number of homogeneous balsa bodies of revolution simulating anti-personnel bombs with a small cylindrical exploding device suspended approximately 10 feet below the bomb. The bodies of revolution included hemispherical, near-hemispherical, and near-paraboloid shapes. The ordinates of one near-paraboloid shape were specified by the Office of the Chief of Ordnance, U. S. Army. The behavior of the various bodies without the cylinder was also investigated. The results of the investigation indicated that several of the bodies descended vertically with their longitudinal axis, suspension line, and small cylinder in a vertical attitude,. However, the body, the ordinates of which had been specified by the Office of the Chief of Ordnance, U. S. Army, oscillated considerably from a vertical attitude while descending and therefore appeared unsuitable for its intended use. The behavior of this body became satisfactory when its center of gravity was moved well forward from its original position. In general, the results indicated that the descent characteristics of the bodies of revolution become more favorable as their shapes approached that of a hemisphere.
    Keywords: Aerodynamics
    Type: NACA-RM-SL51L13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-17
    Description: An analysis has been made of available experimental data to show the effects of most variables that are predominant in determining base pressure at supersonic speeds. Two dimensional bases and bases of bodies of revolution, restricted to turbulent boundary layers, are covered.
    Keywords: Aerodynamics
    Type: NACA-RM-L53C02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-16
    Description: The subject of this paper is the drag of the nose section of bodies of revolution at zero angle of attack. The magnitude of the nose drag in relation to the total drag is very distinctly a function of the body design and the Mach number. It can range from a very small fraction of the total drag of the order of 10 percent to a very large fraction as high as 80 percent. The natural objective of nose design is to minimize the drag, but this objective is not always the primary one. Sometimes other factors overshadow the desire for minimum drag. The most conspicuous example of this is the proposal of guidance engineers that large-diameter spheres and other very blunt shapes be used at the nose tip. This paper will attempt to discuss both phases of the problem, noses for minimum drag and noses with very blunt tips. The state of the theory will also be reviewed and recent theoretical developments described, since the theory still remains a very valuable tool for assaying the effects of compromises in design and departure from shapes for which experimental data are available.
    Keywords: Aerodynamics
    Type: Aerodynamic Characteristics of Bodies at Supersonic Speeds: A Collection of Three Papers; 1-12; NACA-RM-A51J25|NACA Conference on Aerodynamic Design Problems of Supersonic Guided Missiles; Oct 02, 1951 - Oct 03, 1951; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-11
    Description: Theory and experiment were compared and found in good agreement for the elastic Buckling under combined stresses of long flat plates with integral waffle-like stiffening in a variety of configurations. For such flat plates, 45deg waffle stiffening was found to be the most effective of the configurations for the proportions considered over the widest range of combinations of compression and shear.
    Keywords: Aerodynamics
    Type: NACA-RM-L53J27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-11
    Description: Buffet boundaries, buffeting-load increments for the stabilizers and elevators, and buffeting bending-moment increments for the stabilizers and wings as measured in gradual maneuvers for a jet-powered bomber airplane are presented. The buffeting-load increments were determined from strain-gage measurements at the roots or hinge supports of the various surfaces considered. The Mach numbers of the tests ranged from 0.19 to 0.78 at altitudes close to 30,000 feet. The predominant buffet frequencies were close to the natural frequencies of the structural components. The buffeting-load data, when extrapolated to low-altitude conditions, indicated loads on the elevators and stabilizers near the design limit loads. When the airplane was held in buffeting, the load increments were larger than when recovery was made immediately.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L50I06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-11
    Description: The effects of several wing leading-edge camber and deflected-tip modifications on the force and moment characteristics of a 1/20-scale model of the Convair F-102 airplane have been determined at Mach numbers from 0.60 t o 1.14 for angles of attack up to 14 deg. in the Langley 8-foot transonic tunnel. The effects of elevator deflections from 0 deg. to -10 deg. were also obtained for a configuration incorporating favorable leading- edge and tip modifications. Leading-edge modifications which had a small amount of constant-chord camber obtained by vertically adjusting the thickness distribution over the forward (3.9 percent of the mean aerodynamic chord) portion of the wing were ineffective in reducing the drag at lifting conditions at transonic speeds. Leading edges with relatively large cambers designed to support nearly elliptical span load distributions at lift coefficients of 0.15 and 0.22 near a Mach number of 1.0 produced substantial reductions in drag at most lift coefficients.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54K29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-11
    Description: The static longitudinal stability characteristics of a 0.15-scale model of the Hermes A-lE2 missile have been determined in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.98, corresponding to Reynolds numbers, based on body length, of 12.3 x 10(exp 6) to 17.1 x 10(exp 6). This paper presents results obtained with body alone and body-fins combinations at 0 degrees (one set of fins vertical and the other set horizontal) and 45 degree angle of roll. The results indicate that the addition of the fins to the body insures static longitudinal stability and provides essentially linear variations of the lift and pitching moment at small angles of attack throughout the Mach number range. The slopes of the lift and pitching-moment curves vary slightly with Mach number and show only small effects due to the angle of roll.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52I10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-11
    Description: The zero-lift damping in roll of the Bell MX-776 missile has been measured by a sting-mounted rocket-model technique at Mach numbers from 0.6 to 1.56. The damping-in-roll data, in general, show no unusual variation with Mach number. Aileron rolling-moment effectiveness derived from these data and previously obtained rolling-effectiveness data appear reasonable,
    Keywords: Aerodynamics
    Type: NACA-RM-SL54A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-11
    Description: At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52G11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-11
    Description: An investigation was made to determine the static lateral stability and control characteristics of a l/6-scale model of the Republic XF-84H airplane with the propeller operating. The model had a 40deg swept wing of aspect ratio 3.45 and had a thin 3-blade supersonic-type propeller. Many modifications to the basic configuration were investigated in attempts to alleviate lateral and directional trim problems which appeared to be associated with propeller slipstream rotation. Although significant benefits were realized with several modifications, none of those tested would be expected to afford satisfactory behavior for all normal flight conditions. A marked left-wing roll-off tendency was indicated at high angles of attack for the basic model configuration. Projection of only the left slat was the most effective remedy found for this problem with the propeller operating. The use of differential wing-flap deflection also appeared to offer a promising means for reducing the roll-off tendency with power on. The large sidewash over the vertical tail, associated with slip- stream rotation, severely restricted the conditions for which directional , trim could be maintained. A small triangular dorsal fin, oriented opposite to the slipstream rotation, was found very effective in reducing the adverse sidewash flow at the tail.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Convair YF-102 airplane has been made in the Langley free-flight tunnel. The model was flown over a lift-coefficient range from 0.5 to the stall in its basic configuration and with several modifications involving leading-edge slats and increases in vertical-tail size. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect of freeing the controls. The longitudinal stability characteristics of the model were considered satisfactory for all conditions investigated. The lateral stability characteristics were considered satisfactory for the basic configuration over the speed range investigated except near the stall, where large values of static directional instability caused the model to be directionally divergent. The addition of leading-edge slats or an 8-percent increase in vertical-tail area increased the angle of attack at which the model became directionally divergent. The use of leading-edge slats in combination with a 40-percent increase in vertical-tail size eliminated the directional divergence and produced satisfactory stability characteristics through the stall. The longitudinal and lateral control characteristics were generally satisfactory. Although the adverse sideslip characteristics for the model were considered satisfactory over the angle-of-attack range, analysis indicates that the adverse sideslip characteristics of the airplane may be objectionable at high angles of attack.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53L04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the pitching stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient, control deflections, and propeller blade angle were investigated. The tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-11
    Description: A wind-tunnel investigation of a 0.049-scale model of the Boeing XB-52 airplane was made at Mach numbers from 0.30 to 0.925 and at corresponding Reynolds numbers from about 2.3 x 10(exp 6) to 4.3 x 10(exp 6). The results of the investigation indicate satisfactory static longitudinal stability throughout the test Mach-number range and some loss in tail effectiveness beginning at about 0.80 Mach number. A comparison of the results of these tests with those of the same model in the Boeing Airplane Company's wind tunnel showed close agreement of lift- and drag-divergence Mach numbers. Slight differences were observed in tail effectiveness and the position of the stick-fixed neutral point.
    Keywords: Aerodynamics
    Type: NACA-RM-SA51C16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley low-turbulence pressure tunnel of the aerodynamic characteristics of the NACA 0012, 64(sub 2)-015, and 64(sub 3)-018 airfoil sections. Data were obtained at Mach numbers from 0.3 to that for tunnel choke, at angles of attack from -2deg to 30deg, and with the surface. of each airfoil smooth-and with roughness applied at the leading edge.The Reynolds numbers of the tests ranged from 0.8 x 10(exp 6) to 4.4 x 10(exp 6). The results are presented as variations of lift, drag, and quarter-chord pitching-moment coefficients with Mach number.
    Keywords: Aerodynamics
    Type: NACA-RM-L54H06a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-11
    Description: The present investigation was conducted to determine, from low-speed tests in the Langley stability tunnel, the static and rotary derivatives of a 1/9-scale model of the Republic F-91 airplane and various of its components (including the effects of wing incidence) and to determine the accuracy with which the period and damping of the lateral oscillation of the airplane could be calculated by using these experimentally between flight and calculated period and damping of the lateral oscillation were made for Mach numbers from 0.4 to 0.9 at an altitude of 20,OOO feet for 0deg wing incidence and several other wing incidences. Some comparisons were made of the static and rotary derivatives of the model and derivatives estimated by available procedures. determined derivatives (corrected for Mach number effects). Comparisons The results of the investigation have indicated that the model did not have unusual aerodynamic characteristics except for a large (about -0.125) increment in the damping in yaw contributed by the fuselage. Changes in wing incidence, in general, had little effect on the static and rotary derivatives of the model. The static and rotary derivatives of the model could be estimated with good accuracy only in the low angle-of-attack range by using available procedures.
    Keywords: Aerodynamics
    Type: NACA-RM-L53G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-11
    Description: A l/4-scale dynamically similar model of the XFV-1 airplane has been flown in the Ames 40- by 80-foot wind tunnel, using the trailing flight-cable technique. This investigation was devoted to establishing the flight characteristics of the model in forward flight from hovering to wing stall, and in yawed flight (wing span alined with the relative wind) from hovering to the maximum speed at which controlled flight could be maintained. Landings, take-offs, and hovering characteristics in flights close to the ground were also investigated.. Since the remote control system for the model was rather complicated and provided artificial damping about the pitch, roll, and yaw axes, sufficient data from the control-system calibration tests are included in this report to specify the performance of the control system in relation to both the model flight tests and the design of an automatic control system for the full-scale airplane. The model in hovering flight appeared to be neutrally stable. The response of the model to the controls was very rapid, and it was always necessary to provide some amount of artificial damping to maintain control. The model could be landed with little difficulty by hovering approximately a foot above the floor and then cutting the power. Take-offs were more difficult to perform, primarily because the rate of change in power to the model motors was limited by the characteristics of the available power source. The model was,capable of controlled yawed flight at translational velocities up to and including 20 feet per second. The effectiveness of the controls decreased with increasing speed, however, and at 25 fps control in pitch, and probably roll, was lost completely. The model was flown in controlled forward flight from hovering up to 70 fps. During these flights the model appeared to be more difficult to control in yaw than it was in pitch or roll. The flights of the model were recorded by motion picture cameras. These motion pictures are available on loan from NACA Headquarters as a film supplement to this report.
    Keywords: Aerodynamics
    Type: NACA-RM-SA52J15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-11
    Description: A small-scale transonic investigation of two semispan wings of the same plan form was made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range of 0.70 to 1.10 and a mean-test Reynolds number range of 745,000 to 845,000 to determine the effects of partial-span leading-edge camber on the aerodynamic characteristics of a swept-back wing. This paper presents the results of the investigation of wing-alone and wing-fuselage configurations of the two wings; one, was an uncambered wing and the other had the forward 45 percent of the chord cambered over the outboard 55 percent of the span. The semispan wings had 50deg 38ft sweepback of their quarter-chord lines, aspect ratio of 2.98, taper ratio of 0.45, and modified NACA 64A-series airfoil sections tapered in thickness ratio. Lift, drag, pitching moment, and root-bending moment were obtained for these configurations. The results indicated that, for the wing-alone configuration, use of the partial-span leading-edge camber provided an increase in maximum lift-drag ratios up to a Mach number of 0.95, after which no gain was realized. For the wing-fuselage combination, the partial-span leading-edge camber appeared to cause no gain in maximum lift-drag ratio throughout the test range of Mach numbers. The lift-curve slopes of the partial-span leading-edge camber configurations indicated no significant change over the basic configurations in the subsonic range but resulted in slight reductions at the higher Mach numbers. No significantly large changes in pitching-moment-curve slopes or lateral center of additional loading were indicated because of the modification.
    Keywords: Aerodynamics
    Type: NACA-RM-L52D08A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-11
    Description: This report presents the results of wind-tunnel force tests which were conducted to determine the low-speed stability and control characteristics of a full-scale Northrop XSSM-A-3 missile. Tests were made through a range of angles of attack, sideslip, and control deflection, and at various Reynolds numbers. Characteristics of the complete missile are compared with the characteristics of the missile with the landing skids extended, with the vertical tail removed, and with the fuselage alone. No analysis of the data has been made in order to make the results available as soon as possible.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SA50D05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-11
    Description: An investigation of a vortex-generator configuration on the wings of a l/4-scale model of the X-1 airplane having a 10-percent-thick wing was conducted in the Langley 16-foot transonic tunnel. The effect of the vortex generators was determined by comparing the model aerodynamic characteristics, wing-pressure distributions, and wing-wake patterns for model configurations with and without vortex generators on the wings. Results are presented from tests at 0.1 increments in Mach number from about 0.69 to 0.99, at Reynolds numbers of about 4.1 x 10(exp 6) to 4.7 x 10(exp 6), and through an angle-of-attack range up to 1.5 deg at lower speeds and up to 5 deg at the highest speed. In general, little difference in the aerodynamic characteristics was observed, except at a Mach number of 0.90 where a rearward movement of the shock on the upper surface of the wing with the vortex generators installed resulted in less separation.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52L26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: The effects of deflecting full-span, constant-chord, leading-edge flaps, having either round or sharp leading edges, upon the lift, drag,. and pitching moment characteristics of a model of an interceptor-type aircraft have been determined experimentally at subsonic and supersonic speeds. Results indicate that the variations of lift with angle of attack and of pitching moment with lift were unaffected by either the shape of the flap leading edge or flap deflection. Deflection of the flaps having either a round or sharp leading edge increased the drag at zero lift at both subsonic and supersonic speeds. In spite of the increase in the drag at zero lift, however, deflection of the flaps increased the maximum lift-drag ratio at subsonic speeds and had no deleterious effect at supersonic speeds.
    Keywords: Aerodynamics
    Type: NACA-RM-SA54B16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: Tests in the Ames 40- by 80-foot wind tunnel of the static longitudinal characteristics of the Republic RF-84F were made to determine both the origin and a suitable remedy for a pitch up tendency of the airplane encountered at moderate lift coefficients. The results indicated that the pitch-up at moderate lift coefficients was caused by an abrupt change in downwash at the tail which in turn was traceable presumably to flow conditions associated with the inlet-to-wing leading-edge discontinuity.. Attempts to eliminate this pitch-up characteristic with various fairings and stall-control devices. were not wholly successful. The investigation revealed, however, that significant gains in the performance of the airplane could be achieved in the upper lift range.. Three different configurations consisting of a partial-span modified leading edge combined with one or with two-fenees or a leading-edge extension each delayed the onset of separation to higher lift coefficients and provided large improvements in the stability of the airplane in the upper lift range.
    Keywords: Aerodynamics
    Type: NACA-RM-SA52H04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: An investigation to determine the altitude performance of the J57-P-1 turbojet engine and components was conducted at the NACA Lewis altitude wind tunnel. Data were obtained over a corrected inboard rotor speed range from 56 to 106 percent of rated speed, with intercompressor bleeds both open and closed, at altitudes from 15,000 to 50,000 feet and at a flight Mach number of 0.81. The corresponding range of Reynolds number indices was from 0.858 to 0.213. All data presented were obtained with a fixed-area exhaust nozzle sized according to the manufacturer's specification. Over-all engine performance parameters are presented as functions of inboard rotor speed corrected on the basis of engine inlet temperature. Component parameters are presented as functions of their respective corrected rotor speeds. A tabulation of all performance data is included in addition to the graphical presentation. Corrected net thrust is unusually sensitive to changes in corrected inboard rotor speed in the high speed region. A change of 1 percent in speed, at sated speed, produced a change of 6 percent in corrected net thrust . At rated engine speed, increasing the altitude from 15,000 to 50,000 feet at a constant flight Mach number of 0.81 increased the specific fuel consumption 13 percent but did not affect corrected net thrust.
    Keywords: Aerodynamics
    Type: NACA-RM-SE54D30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: A flight test was made a t high subsonic, transonic, and supersonic speeds and at high Reynolds numbers to determine the zero-lift drag of a 1/14-scale model of the Northrop MX-775B pilotless aircraft with small small body. The triangular wing of the model had 67.5 deg leading-edge sweep and 15 deg. trailing-edge sweep, The wing airfoil sections were modified NACA 0004 sections. The drag coefficient based on total wing area was 0.0107 at Mach number 1.60. At transonic speeds the maximum drag coefficient was 0.0125. The force-break Mach number was 0,98.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: A supplementary investigation has been conducted in the Langley 20-foot free-spinning tunnel of a 1/30 -scale model of the Grumman XFlOF-1 airplane to determine what effect full-span slats would have on the spin-recovery characteristics of the swept-wing version of the XFlOF-1 airplane, which had previously been indicated as possessing undesirable spin-recovery characteristics without slats. The effects of extended nose-wheel doors and of fairing the air-duct inlets were also determined. The results indicated that, with slats fully extended, satisfactory recovery could be obtained by rudder reversal provided it was accompanied by movement of the trimmer ailerons to full with the spin (only up-going spoiler operative), Extension of the nose-wheel doors or fairing of the air-duct inlets did not improve the recovery characteristics.
    Keywords: Aerodynamics
    Type: NACA-RM-SL51G19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: Aeroelastic instability phenomena of isolated open and closed rigid bodies of revolution free to move under elastic restraint have been investigated experimentally at low speeds by means of models suspended at zero angles of attack and yaw on slender flexible struts from a wind tunnel ceiling. Three types of instability were observed - flutter similar to classical bending-torsion flutter, divergence, and an uncoupled oscillatory instability which consists in nonviolent continuous or intermittent small-amplitude oscillations involving only angular deformations. The speeds at which this oscillatory instability starts were found to be as low as about one-third of the speed at flutter or divergence and to depend on the shape of the body, particularly that of the afterbody, and on the relative location of the elastic axis. An attempt has been made to calculate the airspeeds and, in the case of the oscillatory phenomena, the frequencies at which these instabilities occur by using slender-body theory for the aerodynamic forces on the bodies and neglecting the aerodynamic forces on the struts. However, the agreement between the speeds and frequencies calculated in this manner and those actually observed has been found to be generally unsatisfactory; with the exception of the frequencies of the uncoupled oscillations which could be predicted with fair accuracy. The nature of the observed phenomena and of the forces on bodies of revolution suggests that a significant improvement in the accuracy of analytical predictions of these aeroelastic instabilities can be had only by taking into account the effects of boundary-layer separation on the aerodynamic forces.
    Keywords: Aerodynamics
    Type: NACA-RM-L53E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-14
    Description: The damping-in-Toll stability derivatives of a missile configuration and its components were determined both experimentally and theoretically. The tests were conducted at a Mach number of 1.52 and at a Reynolds number, based on the mean aerodynamic chord of the wing, of 0.82 x 10(exp 6). The experimental damping derivative of the wing-body combination was 67 percent of the theoretical value. The difference is believed to have resulted mainly from the fact that the theory is not strictly applicable when the Mach number normal to the leading edge is almost unity, which was the case in the present investigation. For the tail-body combination the damping derivative was 86 percent of the theoretical value. In this case, the difference is believed to have been caused partially by mutual interference between the tail surfaces and partially by the low Reynolds number of the flow over the tail. It was found that the damping of the complete configuration was not equal to the sum of the damping derivatives of the components because of the effect of the wing downwash on the damping of the tail.
    Keywords: Aerodynamics
    Type: NACA-RM-A51A03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-17
    Description: A wing-body combination having a plane triangular wing of aspect ratio 2 with NACA 0005-63 thickness distribution in streamwise planes, and twisted and cambered for a trapezoidal span load distribution has been investigated at both subsonic and supersonic Mach numbers. The lift, drag, and pitching moment of the model are presented for Mach numbers from 0.60 to 0.90 and 1.30 to 1.70 at a Reynolds number of 3.0 million. The variations of the characteristics with Reynolds number are also shown for several Mach numbers.
    Keywords: Aerodynamics
    Type: NACA-RM-A50K27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-14
    Description: An investigation at a Mach number of 1.62 was made in the Langley 9-inch supersonic tunnel of a series of missile configurations having tandem lifting surfaces of low aspect ratio and of newly equal span. Some of the variables investigated were interdigitation angle, wing and tail plan form, and longitudinal location of wing with respect to tail. All configurations were tested through an angle-of-attack range from -5 deg to 15 deg at roll angles of 0 deg and 45 deg. Lift, drag, and pitching moment data are presented, together with center-of-pressure locations and tail-lift efficiency factors.
    Keywords: Aerodynamics
    Type: NACA-RM-L51J15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-11
    Description: Three rocket-propelled buffet-research models have been flight tested to determine the buffeting characteristics of a swept-wing- airplane configuration with the horizontal tail operating near the wing wake. The models consisted of parabolic bodies having 45deg sweptback wings of aspect ratio 3.56, at aspect ratio of 0.3, NACA 64A007 airfoil sections, and tail surfaces of geometry and section identical to the wings. Two tests were conducted with the horizontal tail located in the wing chord plane with fixed incidence angles of -1.5deg on one model and 0deg on the other model. The third test was conducted with no horizontal tail. Results of these tests are presented as incremental accelerations in the body due to buffeting, trim angles of attack, trim normal- and side-force coefficients, wing-tip helix angles, static-directional-stability derivatives , and drag coefficients plotted against Mach number. These data indicate that mild low-lift buffeting was experienced by all models over a range of Mach number from approximately 0.7 to 1.4. It is further indicated that this buffeting was probably induced by wing-body interference and was amplified at transonic speeds by the horizontal tail operating in the wing wake. A longitudinal trim change was encountered by the tail-on models at transonic speeds, but no large changes in side force and no wing dropping were indicated.
    Keywords: Aerodynamics
    Type: NACA-RM-L53I10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-11
    Description: An investigation was made of a 1/10-scale dynamically similar model of the North American F-86 airplane to study its behavior when ditched. The model was landed in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds, and conditions of damage were simulated. The behavior of the model was determined from visual observations, acceleration records, and motion-picture records of the ditchings. Data are presented in tabular form, sequence photographs, and time-history acceleration curves. From the results of the investigation it was concluded that the airplane should be ditched at the nose-high, 14 deg attitude to avoid the violent dive which occurs at the 4 deg attitude. The flaps and leading-edge slats should be fully extended to obtain the lowest possible landing speed. The wing tanks should be jettisoned to avoid the undesirable behavior which occurs with the tanks attached. In a calm-water ditching under these conditions the airplane will run smoothly for about 600 feet. Maximum longitudinal and vertical decelerations of about 3g will be encountered.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL9K01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-11
    Description: An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54C19a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-11
    Description: A flight investigation has been made to determine the external drag and pressure recovery of a 1/8.25 - scale flight model of the Consolidated Vultee XF-92 from Mach numbers 0.7 to 1.4 and Reynolds numbers from 8.5 x 10(exp 6) to 19.2 x 10(exp 6) at or near zero lift. Relative mass flow, average pressure recovery, total drag, internal drag, and external drag are presented as functions of Mach number. Between Mach numbers of 0.90 and 0.975, the external drag of the configuration (including base drag of the inner body and additive drag) was about equal to that of a similar model with a faired nose and no mass flow; however, at supersonic speeds the drag coefficient for the faired-nose model remained relatively constant whereas the drag coefficient for the ducted model continued to increase sharply. The internal drag coefficient of the duct was roughly constant at 0.013 up to a Mach number of 1.20; after which it decreased to 0.0075 at a Mach number of 1.4. The over-all pressure recovery of the inlet and duct varied from 94 percent at a Mach number of 0.7 to about 91 percent at a Mach number of 1.4 at a relative-mass-flow ratio of about 0.30. The losses in pressure recovery were believed to be caused by the possible occurrence of separation of flow from the inner body and by an aerodynamically unclean internal configuration which did not duplicate the form proposed for the original XF-92 airplane.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL51E23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Douglas XF4D-1 airplane has been made in the Langley free-flight tunnel. The model was flown with leading-edge slats retracted and extended over a lift-coefficient range from 0.5 to the stall. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect on the stability characteristics of freeing the controls. The longitudinal stability and control characteristics of the model were satisfactory for all conditions investigated except near the stall with slats extended, where the model had a slight nosing-up tendency. The lateral stability and control characteristics of the model were considered satisfactory for all conditions investigated except near the stall with slats retracted, where a change in sign of the static- directional-stability parameter Cn(sub beta) caused the model to be directionally divergent. The addition of an extension to the top of the vertical tail did not increase Cn(sub beta) enough to eliminate the directional divergence of the model, but a large increase in Cn(sub beta) that was obtainable by artificial means appeared to eliminate the divergence and flights near the stall could be made. Artificially increasing the stability derivative-Cn(sub r) (yawing moment due to yawing) and Cn(sub p) (yawing moment due to rolling) had little effect on the divergence for the range of these parameters investigated. Calculations indicate that the damping of the lateral oscillation of the airplane with slats retracted or extended will be satisfactory at sea level but will be only marginally satisfactory at 40,000 feet.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL51J22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-11
    Description: Experimental measurements of the attenuation of plane shock waves moving over rough walls have been made in a shock tube. Measurements of the boundary-layer characteristics, including thickness and velocity distribution behind the shock, have also been made with the aid of new cal techniques which provide direct information on the local boundary-layer conditions at the rough walls. Measurements of shock speed and shock pressure ratio are presented for both smooth-wall and rough-wall flow over lengths of machined-smooth and rough strips which lined all four walls of the shock tube. A simplified theory based on Von Karman's expression for skin-friction coefficient for flow over rough walls, along with a wave-model concept and extensions to include time effects, is presented. In this theory, the shock-tube flow is assumed to be one-dimensional at all times and the wave-model concept is used to relate the local layer growth to decreases in shock strength. This concept assumes that local boundary-layer growths act as local mass-flow sinks, which give rise to expansion waves which, in turn, overtake the shock and lower its mass flow accordingly.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53D13A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-11
    Description: A supplementary investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the Grumman F9F-6 airplane. The primary purpose of the investigation was to reevaluate the spin-recovery characteristics of the airplane in view of the fact that the ailerons had been eliminated from the flaperon-aileron lateral control system of the airplane. A spin-tunnel investigation on a model of the earlier version of the F9F-6 airplane had indicated that use of ailerons with the spin (stick right in a right spin) was essential to insure recovery. The results indicate that with.ailerons eliminated, it may be difficult to obtain an erect developed spin but if a fully developed spin is obtained on the airplane, recovery therefrom may be difficult or impossible. Flaperon deflection should have little effect on spins or recoveries.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54L01a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/23-scale model of the Lockheed XFV-1 airplane to determine the effects of control setting and movement upon the erect-spin and recovery characteristics for a range of airplane loading conditions. A windmilling propeller was simulated on the model for some of the tests. The investigation included determination of the size of tail parachute required for emergency recovery from demonstration spins. The tumbling tendencies of the model were also investigated. The results indicated that any erect or inverted spin obtained on the airplane will be satisfactorily terminated if recovery is attempted by full rudder reversal accompanied by simultaneous lateral and longitudinal movement of the stick to neutral, The model test results showed that an 11.5-foot flat-type tail parachute (drag coefficient approximately 0.73) with a 27.5-foot towline will be effective as an emergency spin-recovery device during demonstration spins of the airplane. The model results also indicate that the airplane will not tumble for any.loading condition indicated possible.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-11
    Description: Force tests on a proposed body shape of the Hermes A-2 missile with and without longitudinal spoilers were made at Mach number 4.04. Values of normal force coefficient, pitching-moment coefficient, and center-of-pressure position were obtained.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50H23A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted to determine the stability and control characteristics of a 0.13-scale free-flight model of the Convair XFY-1 airplane during take-offs and landings in steady winds. The tests indicated that take-offs in headwinds up to at least 20 knots (full scale) will be fairly easy to perform although the airplane may be blown downstream as much as 3 spans before a trim condition can be established. The distance that the airplane will be blown down-stream can be reduced by restraining the upwind landing gear until the instant of take-off. The tests also indicated that spot landings in headwinds up to at least 30 knots (full scale) and in crosswinds up to at least 20 knots (full scale) can be accomplished with reasonable accuracy although, during the landing approach, there will probably be an undesirable nosing-up tendency caused by ground effect and by the change in angle of attack resulting from vertical descent. Some form of arresting gear will probably be required to prevent the airplane from rolling downwind or tipping over after contact. This rolling and tipping can be prevented by a snubbing line attached to the tip of the upwind' wing or tail or by an arresting gear consisting of a wire mesh on the ground and hooks on the landing gear to engage the mesh.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54E28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-11
    Description: An approximate method of calculating the deformations of wings of uniform thickness having swept, M or W, Delta, and swept-tip plan forms is presented. The method employs an adjustment to the elementary beam theory to account for the effect of the triangular root portion of a swept wing on the deformation of the outboard section of the wing. To demonstrate the general applicability of the method, the modified elementary theory is applied to the more complex M or W, Delta, and swept-tip plan forms as well as to swept plan forms. For the purpose of calculating angles of attack, it is shown that the unmodified elementary beam theory applied to that part of the wing outboard of the root triangle produces satisfactory results. However, for calculating deflections it is necessary to include the effects of the root-triangle deformation.
    Keywords: Aerodynamics
    Type: NACA-RM-L53A23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-11
    Description: A theoretical investigation has been made to determine the effect on the lateral stability of the Douglas D-58-II airplane of an autopilot sensitive to yawing velocity. The effects of inclination of the gyro spin axis to the flight path and of tire lag in the autopilot were also determined. The flight conditions investigated included landing at sea level, approach condition at 12,000 feet, and cruising at 50,000 feet at Mach numbers of 0.80 and 1.2. The results of the investigation indicated that the lateral stability characteristics of the D-558-II airplane for the flight condition discussed should satisfy the Air Force - Navy period-damping criterion when the proposed autopilot is installed. Airplane motions in sideslip subsequent to a disturbance in sideslip are presented for several representative flight conditions in which a time lag in the autopilot of 0.10 second was assumed.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L50F22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-11
    Description: An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of a flying-boat hull of a length-beam ratio of 15 in the presence of a wing. The investigation was an extension of previous tests made on hulls of length-beam ratios of 6, 9, and 12; these hulls were designed to have approximately the same hydrodynamic performance with respect to spray and resistance characteristics. Comparison with the previous investigation at lower length-beam ratios indicated a reduction in minimum drag coefficients of 0.0006 (10 peroent)with fixed transition when the length-beam ratio was extended from 12 to 15. As with the hulls of lower length-beam ratio, the drag reduction with a length-beam ratio of 15 occurred throughout the range of angle of attack tested and the angle of attack for minimum drag was in the range from 2deg to 3deg. Increasing the length-beam ratio from 12 to 15 reduced the hull longitudinal instability by an mount corresponding to an aerodynamic-center shift of about 1/2 percent of the mean aerodynamic chord of the hypothetical flying boat. At an angle of attack of 2deg, the value of the variation of yawing-moment coefficient with angle of yaw for a length-beam ratio of 15 was 0.00144, which was 0.00007 larger than the value for a length-beam ratio of 12.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-11
    Description: The effect on drag of positioning symmetrically mounted Douglas Aircraft Company, Inc. stores in pairs on a parabolic fuselage of fineness ratio 10.0 has been determined by flight tests of rocket-propelled, zero-lift models through a range of Mach number from 0.9 to 1.8. The stores were mounted in half-submerged positions and on pylons and were tested in three longitudinal locations on the fuselage with the forward position being located at the maximum diameter of the fuselage. The effects on drag of removing the half-submerged stores or extending them outward on pylons also was investigated by tests of models with half-submerged-store cavities on the fuselage. Two pylons differing in airfoil section and thickness were tested at the forward position of the stores on the fuselage with cavities. The half-submerged stores gave the smallest drag increments, which were approximately equal regardless of their respective longitudinal locations. Removing the half-submerged stores to expose the cavities increased the drag increments from two to three times. For the pylon-mounted stores, the store in the midposition had less drag than in the forward or rear positions at supersonic speeds. Adding the half-submerged-store cavities to the pylon-mounted-store configurations reduced the drag at the rear position between Mach numbers 0.95 and 1.50 and increased the drag at the midposition throughout the speed range. Changing from the 6-percent-thick flat pylon to the 10-percent-thick airfoil pylon increased the total drag slightly above Mach number 1.10. Good agreement was obtain& between the experimental and theoretical interference drag coefficients for the pylon-mounted stores (without fuselage cavities} in the three longitudinal locations tested at Mach numbers 1.2 and 1.5.
    Keywords: Aerodynamics
    Type: NACA-RM-L54E26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-14
    Description: The method for predicting wing- tail interference whereby the trailing vortex system behind lifting wings is replaced by fully rolled-up vortices has been applied to the calculation of tail efficiency parameters, lift characteristics, and center -of-pressure locations for a series of generalized missile configurations. The calculations have been carried out with assumed and experimental vortex locations, and comparisons made with experimental data. The measured spanwise locations of the vortices for the inline case were found to be in good agreement with the asymptotic values computed from the center of gravity of the vorticity using the method of Lagerstrom and Graham. For the interdigitated configurations the measured spanwise locations were in only fair agreement with the asymptotic locations computed for the inline case. The vertical displacement of the vortices with angle of attack for both inline and interdigitated configurations was small. The method utilizing the rolled -up vortex concept was shown to give good results in the prediction of tail efficiency variations with angle of attack for inline configurations. Not as good correlation with experiment was shown for the interdigitated configurations. Complete configuration lift -curve slopes and center -of-pressure locations, obtained using t ail efficiency calculations together with the characteristics of the components obtained from available theoretical methods, showed excellent correlation with experimental results.
    Keywords: Aerodynamics
    Type: NACA-RM-L52H05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-14
    Description: A flight investigation has been made to determine the longitudinal stability and control characteristics of a 60 0 delta-wing-canard missile configuration with an exposed wing-canard area ratio of 16:1. The results presented include the longitudinal stability derivatives, control effectiveness, and drag characteristics for a Mach number range of 0.75 to 1.80 and are compared with the results of a similar configuration having larger 6ontrols. Stability characteristics are also presented from the flights of an interdigitated canard configuration at a Mach number of 2.08 and a wing-body configuration at Mach numbers of 1.25 to 1.45. The stability derivatives varied gradually with Mach number with the exception of the damping-in-pitch derivative. Aerodynamic damping in pitch decreased to a minimum at a Mach number of 1.0 3, then increased to a peak value at a Mach number of 1.26 followed by a gradual decrease at higher Mach numbers. The aerodynamic-center location of the in-line canard configuration shifted rearward 13 percent of the mean aerodynamic chord at transonic speeds. The pitching-moment curve slope was 25 percent greater for the model having no canards than for the in-line configuration. No large effects of interdigitation were noted in the stability derivatives. Pitching effectiveness of the in-line configuration was maintained throughout the Mach number range. A comparison of the stability and control characteristics of two canard configurations having different area controls showed that decreasing the control area 44 percent decreased the pitching effectiveness proportionally, shifted the aerodynamic-center location rearward 9 to 14 percent of the mean aerodynamic chord, and reduced the total hinge moments required for 10 trimmed flight about 50 percent at transonic speeds.
    Keywords: Aerodynamics
    Type: NACA-RM-L52D24a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-14
    Description: The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing-tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift-interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the distance between the wing trailing vortex wake and the tail surfaces and thus was a function of angle of attack, angle of roll, and wing-tail interdigitation. Although the configuration at zero roll with the wing and tail in line exhibited the least center-of-pressure travel, the configuration with the wing and tail interdigitated had the least change in wing-tail interference over the angle-of-attack range. The lift effectiveness of the variable-incidence wing was reduced by more than 70 percent as a result of an increase in the combined angle of attack and wing incidence from 0 deg to 40 deg. The wing-tail interference (effective downwash at the tail) due to wing deflection was nearly zero as a result of a region of negative vorticity shed from the inboard portion of the wing. The lift characteristics of the configuration and its components were satisfactorily predicted by the calculated results, but the pitching moments at large angles of attack were not because of the influence of factors for which no adequate theory is available, such as the variation of the crossflow drag coefficient along the body and the effect of the wing downwash field on the afterbody loading.
    Keywords: Aerodynamics
    Type: NACA-RM-A54H27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-13
    Description: The observed discrepancy at supersonic speeds between theoretical and apparent experimental average flat plate friction-drag coefficients calculated from boundary layer total-pressure surveys was investigated. Effects of the total-pressure probe, heat transfer through the leading edge region, change in leading-edge radius and strength of the leading-edge wave, possible early transition to turbulent flow or bursts of turbulence, and the slight stream-wise pressure gradient inherent in flat plate flow were investigated for plates with very sharp leading edges. Only one of these factors, the effect of the total-pressure probe, was found to be significant. Total-pressure probes of different tip heights, when placed in laminar boundary layers developing under identical conditions, were found to yield different values of friction drag coefficient. Extrapolation of these measurements indicates that a probe of vanishing size would yield the theoretical predicted values of average flat plate friction-drag coefficients. A correlation describing the relation between the friction-drag discrepancy and the probe tip height is presented.
    Keywords: Aerodynamics
    Type: NACA-TN-2891
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-11
    Description: A flight investigation has been made to determine the drag and longitudinal stability of a 1/10- scale model of the Douglas XF4D-1 airplane from Mach numbers 0.7 to 1.4 at lift coefficients near zero. The drag rise occurred near M = 0.95. The external drag coefficient was a constant value of about 0.012 at subsonic speeds up to the point of drag rise where it increased abruptly to a value of 0.030 at M = 1.0 followed by a more gradual increase to a value of 0.038 at M = 1.25. The model indicated that, at 35,000 feet and a level-flight free-stream Mach number of 1.0, the drag of the full-scale airplane would exceed the thrust available from an XJ40-WE-8 engine with after-burning. The transonic trim change was small. The aerodynamic center moved gradually from the most forward location of 21.0-percent mean aerodynamic chord at M = 0.9 to the most rearward location of 40-percent mean aerodynamic chord at M = 1.25. The damping in pitch was low.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL51L07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-11
    Description: An investigation was made of the trim and dynamic response characteristics of the free-floating horizontal tail of a 1/7-scale model of the complete tail of the Grumman XF10F-1 airplane in the Langley 8-foot transonic tunnel at Mach numbers up to 1.13. The complete tail was mounted in the tunnel on a 3deg conical support body. Various configurations were investigated. A loss in damping of the horizontal tail at transonic speeds was shown by both tunnel and flight tests. The loss in damping extended over a greater Mach number range and the maximum loss occurred at a higher Mach number in the tunnel tests. Large-amplitude oscillations of the horizontal tail of the basic configuration which occurred at low supersonic Mach numbers appeared to be primarily due to the vertical tail of the basic configuration and the interference effects associated with this tail. Secondary factors contributing to the development of the large-amplitude oscillations of the horizontal tail of the basic configuration were probably the loss in damping of the horizontal tail at transonic speeds and the turbulence of the airstream itself.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53D28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-11
    Description: At subsonic speeds the pressure drag arising from the thickness of the body or wings is negligible so long as the shapes are sufficiently well streamlined to avoid flow separation. In that range there exists no possibility of either favorable or adverse interference on the pressure distributions themselves. If one body is so placed as to receive a drag from the pressure field of another then the second body is sure to receive a corresponding increment of thrust from the first. At supersonic speeds this tolerance, which was permitted the designer, disappears and the drag becomes sensitive to the shape and arrangement of the bodies.To be sure, the primary factor here is the thickness ratio, but nevertheless there exist arrangements in which a large cancellation of drag occurs.
    Keywords: Aerodynamics
    Type: NACA-RM-A53H18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-11
    Description: Calibrations of the Friez Aerovane, Wind Measuring Set AN/GMQ-11, manufactured by the Friez Instrument Division of the Bendix Aviation Corporation, were made in the Langley 300 MPH 7- by 10-foot tunnel at the request of the Signal Corps, U, S. Army. Two propellers snd two generators were tested through a speed range of 15 to 190 knots, The results indicated that at airspeeds greater than 80 knots the instrument indicated airspeeds higher than the tunnel airspeed..
    Keywords: Aerodynamics
    Type: NACA-RM-SL53L23B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-11
    Description: The investigation of the lateral stability of an automatically controlled glide bomb led also to the attempt of clarifying the influence of a phugoid oscillation or of any general longitudinal oscillation on the lateral stability of a glide bomb. Under the assumption that its period of oscillation considerably exceeds the rolling and yawing oscillation and that c(sub a) is, at least in sections, practically constant, the result of this test is quite simple. It becomes clear that the influence of the phugoid oscillation may be replaced by suitable variation of the rolling-yawing moment on a rectilinear flight path instead of the phugoid oscillation. If the flying weight of the glide bomb of unchanged dimensions is increased, an increase of the flight velocity will be more favorable than an increase of the lift coefficient. The arrangement of the control permits lateral stability to be achieved in every case; a minimum rolling moment due to sideslip proves of great help.
    Keywords: Aircraft Stability and Control
    Type: NACA-TM-1248 , ZWB Forschungsbericht; Rept-1819
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-11
    Description: This paper is concerned primarily with the application of the "area rule" to the interpretation and improvement of the drag-rise characteristics of wing-body combinations at transonic and moderate supersonic speeds. Consideration of the general physical nature of the flow at transonic speeds, together with comparisons of the flow fields and drag-rise characteristics for wing-body combinations and bodies of revolution has led to the conclusion that near the speed of sound the drag rise for a thin low-aspect-ratio wing-body combination is primarily dependent on the axial distribution of cross-sectional area normal to the airstream (ref. 1). (The drag rise, sometimes referred to as pressure drag, is the difference between the drag level near the speed of sound and the drag level at subsonic speeds where the drag is due primarily to skin friction.) In order to illustrate the concept, figure 1 shows a wing-body combination and a body of revolution. A typical cross section normal to the airstream for the wing-body combination is shown at AA. The cross-sectional area of the wing is wrapped around the body of revolution so that the body has the same cross-sectional area at BB. All the other cross-sectional areas of the body of revolution are the same as those for the wing-body combination at the same axial stations. On the basis of the conclusion just stated, the drag rise for this body of revolution should be similar to that for the wing-body combination.
    Keywords: Aerodynamics
    Type: NACA-RM-L53I15a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-11
    Description: The effects of inlet circumferential position around the fuselage on the characteristics of a half-conical scoop inlet having a 24.6deg half-angle cone have been investigated in the langley 4- by 4-foot supersonic pressure tunnel. Pressure-recovery results have been obtained at a Mach number of 2.01 for a fixed boundary-layer-bleed height which was 60 percent of the boundary-layer thickness at an angle of attack of 0deg, and for cowling position parameters of 42.4deg and 38.0deg. inlet had a capture area equal to 24.9 percent of the basic-fuselage frontal area. The angle of attack was varied from 0deg to 12deg. The most favorable pressure-recovery characteristics at angles of attack were obtained with the Inlet located on the bottom of the fuselage where the maximum recovery increased from a value of 81 percent at an angle of attack of 0deg to 87 percent at 12deg. In general, the pressure recovery decreased with increasing angle of attack for all other inlet locations. At a given angle of attack the pressure recovery decreased as the inlet location was progressively moved from the bottom to the top of the fuselage. Stable subcritical operation of the inlet with nearly constant pressure recovery was obtained for inlet mass-flow ratios from 1.0 to about 0.76 at an angle of attack of 0deg with the central body in the design position.
    Keywords: Aerodynamics
    Type: NACA-RM-L53D30B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-10
    Description: Tests on equivalent bodies of revolution of six configurations of the Consolidated Vultee Aircraft Corporation proposed supersonic bomber (Convair MX-1964) have indicated that it is possible to reduce the drag of the configuration by designing it to have a favorable area distribution. The method of NACA RM L53I22c to predict the peak pressure drag of a configuration on the basis of its area distribution gave generally good agreement with the subject models.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53K04 , L-82024
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-11
    Description: A flight test has been conducted to determine the longitudinal stability and control,characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane without propellers for the Mach number range between 0.73 and 1.19.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54B03A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-11
    Description: A flight investigation was made at high subsonic, transonic, and supersonic speeds and at high Reynolds numbers to determine the zero-lift drag of a 1/10-scale model of the Northrop MX-775A missile and a scale model of the missile fuselage. The model of the complete configuration has a 45deg swept wing of aspect ratio 5.5 and a 33deg swept vertical fin. The body model was stabilized by three 45deg swept fins. The-drag-rise Mach number for the model of the complete configuration was approximately 0.96. The drag coefficient based on total wing area was 0.0330 at Mach number 1.39. The drag coefficient of the body model less fin drag was approximately 55 percent that of the complete model at the same Mach number. Addition of the wing to the fuselage apparently resulted in a favorable drag interference near Mach number 1.0.
    Keywords: Aerodynamics
    Type: NACA-RM-SL51K07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-11
    Description: An investigation of the longitudinal stability and of the all-movable horizontal tail and aileron control of a 1/80-scale reflection-plane model of the Consolidated Vultee Skate 9 seaplane has been made through a Mach number range of 0.6 to 1.16 on the transonic bump of the Langley high-speed 7- by 10-foot tunnel. At moderate lift coefficients (0.4 to 0.8) and below a Mach number of 1.0 the model was statically unstable longitudinally. The static longitudinal stability of the model at low lift coefficients increased with Mach number corresponding to a shift in aerodynamic center from 37 percent mean aerodynamic chord at a Mach number of 0.60 to 64 percent at a Mach number of 1.10. Estimates indicate that the tail deflection angle required for steady flight and for accelerated maneuvers of the Skate 9 airplane would probably not vary greatly with Mach number at sea level, but for accelerated maneuvers at altitude the tail deflection angle would probably vary erratically with Mach number. The variation of rolling-moment coefficient with aileron deflection angle was approximately linear, agreed well with theory, and held for the range of aileron deflections tested (-17.1 deg to 16.6 deg). At low lift coefficients the drag rise occurred at Mach numbers of 0.95 and 0.90 for the wing alone and the complete model, respectively. The effects of the canopy on the model were small. For the ranges investigated, angle-of-attack and Mach number changes caused no large pressure drops in the jet-engine duct.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL51E22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-11
    Description: An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane. This paper presents the results of flight tests to determine the stability and control characteristics of the model during constant-altitude slow transitions from hovering to normal unstalled forward flight. The tests indicated that the airplane can be flown through the transition range fairly easily although some difficulty will probably encountered in controlling the yawing motions at angles of attack between about 60 and 40. An increase in the size of the vertical tail will not materially improve the controllability of the yawing motions in this range of angle of attack but the use of a yaw damper will make the yawing motions easy to control throughout the entire transitional flight range. The tests also indicated that the airplane can probably be flown sideways satisfactorily at speeds up to approximately 33 knots (full scale) with the normal control system and up to approximately 37 knots (full scale) with both elevons and rudders rigged to move differentially for roll control. At sideways speeds above these values, the airplane will have a strong tendency to diverge uncontrollably in roll.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53E18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the rolling stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53E13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to deter+nine the yawing stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53D01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-11
    Description: The results of free-flight drag tests of 40-millimeter shells conducted by the National Advisory Committee for Aeronautics for the Ballistic Research Laboratories, Ordnance Department, U. S. Army, are presented. A drag reduction at supersonic speeds of approximately 20 percent of the projectile's drag was obtained by combustion in the wake of the projectile in flight.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53D01A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-11
    Description: An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52G03A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/20-scale model of the Consolidated Vultee XFY-1 airplane with a windmilling propeller simulated to determine the effects of control setting and movements upon the erect spin and recovery characteristics for a range of airplane-loading conditions. The effects on the model's spin-recovery characteristics of removing the lower vertical tail, removing the gun pods, and fixing the rudders at neutral were also investigated briefly. The investigation included determination of the size parachute required for emergency recovery from demonstration spins. The tumbling tendencies of the model were also investigated. Brief static force tests were made to determine the aerodynamic characteristics in pitch at high angles of attack. The investigation indicated that the spin and recovery characteristics of the airplane with propeller windmilling will be satisfactory for all loading conditions if recovery is attempted by full rudder reversal accompanied by simultaneous movement of the stick laterally to full with the spin (stick right in a right spin) and longitudinally to neutral. Inverted spins should be satisfactorily terminated by fully reversing the rudder followed immediately by moving the stick laterally towards the forward rudder pedal and longitudinally to neutral. Removal of the gun pods or fixing the rudders at neutral will not adversely affect the airplane's spin-recovery characteristics, but removal of the lower vertical tail will result in unsatisfactory spin-recovery characteristics. The model-test results showed that a 13.3-foot wing-tip conventional parachute (drag coefficient approximately 0.7) should be effective as an emergency spin-recovery device during demonstration spins of the airplane. It was indicated that the airplane should not tumble and that no unusual longitudinal-trim characteristics should be obtained for the center-of-gravity positions investigated.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52L10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-11
    Description: An investigation of the spin and recovery characteristics of a 1/24-scale model of the Grumman AF-2S, -2W airplane was conducted in the Langley 20-foot free-spinning tunnel. The effects of controls on the erect and inverted spin and recovery characteristics for a range of possible loadings of the.airplane were determined. The effect of a revised-tail installation (small dual fins added to the stabilizer of the original tail and the vertical-tail height of the original tail increased) and the effect of various ventral-fin and antispin-fillet installations were determined. The investigation also included spin-recovery parachute tests.
    Keywords: Aerodynamics
    Type: NACA-RM-SL51B20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-11
    Description: A model of the Convair Y2-2 airplane was tested in Langley tank no. 2 to determine whether satisfactory stability in yawed landings was possible with a certain ventral fin. Free-body landings were made in smooth and rough water at two speeds and two rates of descent with the model yawed 15deg. The behavior of the model was determined by visual observations and from motion-picture re.cords. It was concluded that satisfactory stability was possible with the ventral fin as tested but that the characteristics of the model shock absorbers and the settings of the elevon control surfaces had an appreciable influence on behavior.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL51H17A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley 9- by 12-inch super-sonic blowdown tunnel at Mach numbers of 1.62 and 1.96 of a partial-span body with one tail surface, designed for use on the Hughes Falcon (MX-904) missile. The present paper extends the work reported in NACA-RM-SL50E10. Force and moment data including elevator hinge moment were obtained for the conditions of the tail in the presence of a small segment of the fore-shortened body, in the presence of a semi-span body and attached to a semi-span body, and for the condition of the foreshortened semi-span body alone.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50G13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the Langley high-speed 7- by 10-foot tunnel to determine effects of modifications to a bomb model (particularly with regard to drag) when mounted on a wing-fuselage model and tested at Mach numbers from 0.70 to 1.10. In addition, the static longitudinal stability characteristics of several configurations of a larger scale model of the bomb alone were obtained over a Mach number range from 0.50 to 0.95. The results obtained for the wing-fuselage-bomb model indicate that large reductions in installation drag were obtained for the wing-fuselage-bomb model when the flat nose of the basic bomb was replaced by rounded or pointed noses of various calibers. Shortening the mounting pylon gave further decreases in the installation drag. The tests of the bomb alone indicated that only the flat-nose configurations were stable over the greater part of the Mach number range. Nose-shape modifications which improved the drag also caused the bombs to become unstable at low angles of attack. The stability of the low-drag bomb configurations could be improved by lengthening the cylindrical portion of the body behind the center of gravity.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54D30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 8-foot transonic tunnel to determine the effects of several fuselage modifications on the transonic drag-rise characteristics of a 1/20-scale model of the Convair F-102 airplane. Tests covered an angle-of-attack range from 0deg to about 10deg and a Mach number range from 0.60 to 1.14. Results indicated that the transonic drag rise .for the basic F-102 airplane could be substantially reduced by extending the fuselage after-body approximately 8 percent of the fuselage length. Tests of other bodies indicated that a shorter (4-percent) afterbody extension may have a similar effect on the drag rise. Further improvement of the axial cross-sectional-area distribution of the 8-percent extended configuration through the addition of fuselage volume resulted in additional reductions in the drag rise at a Mach number of 1.0 and caused no or only slight drag penalties at the higher Mach numbers. The results of the present tests generally substantiate the area-rule concept with respect to the prediction of the transonic drag rise through the use of an equivalent-area body of revolution for a practical delta-wing airplane configuration.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54K18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-11
    Description: An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54E07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-11
    Description: A low-speed wind-tunnel investigation has been made of some aspects of the aerodynamic problems associated with the use of air-to-air missiles when carried externally on aircraft. Measurements of the forces and moments on a missile model for a range of positions under the mid-semispan location of a 45deg sweptback wing indicated longitudinal and lateral forces with regard to both carriage and release of the missiles. Surveys of the characteristics of the flow field in the region likely to be traversed by the missiles showed abrupt gradients in both flow angularity and in local dynamic pressure. Through the use of aerodynamic data on the isolated missile and the measured flow-field characteristics, the longitudinal forces and moments acting on the missile while in the presence of the wing-fuselage combination could be estimated with fair accuracy. Although the lateral forces and moments predicted were qualitatively correct, there existed some large discrepancies in absolute magnitude.
    Keywords: Aerodynamics
    Type: NACA-RM-L54J20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-11
    Description: Tests were made in the Langley 8-foot high-speed tunnel to investigate the aerodynamic characteristics of the D-558-1 airplane and various wing and tail configurations on the D-558-1 fuselage. The various wing and tail configurations were tested to determine the aerodynamic effects of aspect ratio and sweep for suitable use on the second phase of the D-558 project (D-558-2). The tests were conducted through a speed range from a Mach number of 0.40 to approximately 0.94.This part of the investigation includes the lift and drag results available for the configurations tested at this rate. The D-558-1 results indicated that the lift force break would occur at a Mach number of 0.85 with some reduction in lift at speeds above this Mach number. Tests indicated that the airplane will have satisfactory lift and drag characteristics up to and including its design Mach number of 0.85. The 35deg sweptback, 35deg swept-forward, and low-aspect-ratio (2.0) wing configurations all showed pronounced improvements in maintaining lift throughout the Mach number range tested and in increasing the critical speeds above the D-558-1 value &itical to critical Mach numbers on the order of 0.9. Insofar as lift and drag characteristics are concerned level flight at speeds approaching the velocity of sound appears practical if swept or low-aspect-ratio configurations similar to those tested are used.
    Keywords: Aerodynamics
    Type: NACA-RM-L6J09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: Experimental results showing the static longitudinal-stability and control characteristics of a model of a fighter airplane employing a low-aspect-ratio unswept wing and an all-movable horizontal tail are presented. The investigation was made over a Mach number range from 0.60 to 0.90 and from 1.35 to 1.90 at a constant Reynolds number of 2.40 million, based on the wing mean aerodynamic chord. Because of the location of the horizontal tail at the tip of the vertical tail, interference was noted between the vertical tail and the horizontal tail and between the wing and the horizontal tail. This interference produced a positive pitching-moment coefficient at zero lift throughout the Mach number range of the tests, reduced the change in stability with increasing lift coefficient of the wing at moderate lift coefficients in the subsonic speed range, and reduced the stability at low lift coefficients at high supersonic speeds. The lift and pitching-moment effectiveness of the all movable tail was unaffected by the interference effects and was constant throughout the lift-coefficient range of the tests at each Mach number except 1.90.
    Keywords: Aerodynamics
    Type: NACA-RM-SA54D05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: This paper presents the results of an investigation of the dynamic stability and controllability of a model which approximately represents the Lockheed XFV-1 airplane to a 1/8 scale. The investigation consisted of hovering flights in still air at a considerable height above the ground, hovering flights very close to the ground, vertical take-offs and landings, flights through the transition range from hovering to normal forward flight, and sideways translational flights. The model could be flown smoothly and easily in hovering flight despite the fact that the uncontrolled pitching and yawing motions were unstable oscillations. There was a noticeable reduction in the controllability of the model when hovered very close to the ground but take-offs could be made easily and landings on a g,ven spot could be made accurately in spite of this adverse ground effect. Flights through the transition range from hovering to normal forward flight could be performed fairly easily. The model seemed to have stability of angle of attack and angle of roll over most of the transition range. The yawing motion was divergent in the very high angle-of-attack range but could be controlled easily. At the lower angles of attack, the model seemed to become stable in yaw. In sideways flight there was an increasingly strong tendency to diverge in roll as the speed was increased and finally, at a speed of about 25 knots (full scale), the model rolled off despite efforts of the pilot to control it.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54J18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: A low-speed investigation was made of a 1/6-scale model of the Republic XF-84H airplane. The model had a single tractor propeller and a 40deg swept wing of aspect ratio 3.45. This investigation was undertaken to provide information on the effects of propeller operation on longitudinal stability characteristics for the XF -84H airplane and to provide an indication of slipstream effects that might be encountered on similar swept-wing configurations. Effects of propeller operation were generally destabilizing for all conditions investigated; however, the over-all stability characteristics with power on were greatly dependent on the power-off characteristics. With flaps and slats retracted, longitudinal instability was present at moderate angles of attack both with the propeller off and with power on. The longitudinal stability with flaps and slats deflected, which was satisfactory without power, was decreased by propeller operation, but no marked pitch-up tendency was indicated. Significant improvement in the power-on stability with flaps retracted was achieved by use of either a wing fence at 75 percent semispan, a leading-edge chord-extension from 65 to 94 percent semispan, or a raised horizontal tail located 65 percent semispan above the thrust line.
    Keywords: Aerodynamics
    Type: NACA-RM-SL-53F26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: Models of the Hermes A-3B missile were tested in the Ames supersonic free-flight wind tunnel to determine the static-longitudinal-stability characteristics at a Mach number of 5.0 and a Reynolds number based on body length of 10 million. The results indicated that the model center of pressure was 45.3 percent of the body length aft of the nose and the lift-curve slope based on body frontal area was 0.064 per degree. Estimates indicated that the effect on these characteristics of aeroelastic twisting of the model fins was small but important if a precise location of center of pressure is required. A comparison of the test results with predictions based on available theory showed that the theory was useful only for rough estimates, The drag coefficient at zero lift, based on body frontal area, was found to be 0.155.
    Keywords: Aerodynamics
    Type: NACA-RM-SA52C10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: Drag and longitudinal trim at low lift of the North American YF-100A airplane at Mach numbers from 0.76 to 1.77 as determined from the flight test of a 0.11-scale rocket model are presented herein. Also included are some longitudinal stability and some qualitative pitch-damping data. The subsonic external-drag-coefficient level was about 0.012, and the supersonic level was about 0.043. The drag rise occurred at a Mach number of 0.95. The longitudinal trim change at low lift consisted basically of a mild nose-up tendency at a Mach number of 0.90. An indication of wing flutter was present at Mach numbers from 0.95 to 1.11. However, the full-scale airplane wing has approximately twice the scaled first-bending frequency as the model tested and, hence, will probably be free of this type of flutter. The aerodynamic-center location was 71 percent behind the leading edge of the mean aerodynamic chord at a Mach number of 1.03 and 62 percent at a Mach number of 1.74. Qualitative measurement of damping in pitch indicates that at low lift coefficients damping will be low at a Mach number of 1.03.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53E11a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a 1/30 - scale model of the Grumman XFlOF-1 airplane to determine its spin and recovery characteristics. The investigation included erect and inverted spins for both the straight-wing and swept-wing configurations. Tests to determine the optimum size spin-recovery parachutes and the rudder forces required for recovery were also made. The results indicated that in the straight-wing configuration, satisfactory recoveries of the airplane will be obtained from erect and inverted spins by rudder reversal alone. In the swept-wing configuration recoveries will be unsatisfactory from erect spins. Unsweeping the wings during the spin and reversal of the rudder, however, will lead to eventual recovery. The test results also indicated that, if existing small ailerons are made deflectable through large angles, satisfactory recoveries will be obtained from erect spins in the swept-wing configuration by simultaneous movement of the rudder to against the spin and movement of the ailerons to with the spin. Normal-size ailerons deflected through a normal range would also be effective. Satisfactory recoveries by rudder reversal will be obtained from inverted spins in the swept-wing configuration. In the straight-wing configuration a 14.2-foot tail parachute or a 5.0-foot wing-tip parachute opened on the outer wing tip will effect satisfactory recovery of the airplane by parachute action alone; a 30.0-foot tail parachute or a 10.0-foot wing-tip parachute will be required for the swept-wing configuration. The forces required to fully reverse the rudder should be within the capabilities of the pilot.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50L14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.41 to determine the static stability and control and drag characteristics of a l/l5-scale model of the Grunman F9F-9 airplane. The effects of alternate fuselage shapes, wing camber, wing fences, and fuselage dive brakes on the aerodynamic characteristics were also investigated. These tests were made at a Reynolds number of 1.96 x l0 (exp 6) based on the wing mean aerodynamic chord of 0.545 foot. The basic configuration had a static margin of stability of 38.4 percent of the mean aerodynamic chord and a minimum drag coefficient of 0.049. For the maximum horizontal tail deflection investigated (-l0 deg), the maximum trim lift coefficient was 0.338. The basic configuration had positive static lateral stability at zero angle of attack and positive directional control throughout the angle-of-attack range investigated up to ll deg.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54G08
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: The longitudinal stability and control characteristics of a 1/30-scale model of the Republic XF-103 airplane were investigated in the Langley 8-foot transonic tunnel. The effect of speed brakes located at the end of the fuselage was also investigated. The main part of the investigation was made with internal flow in the model, but some data were obtained with no internal flow. The longitudinal stability and control at transonic-speeds appeared satisfactory. The transonic drag rise was small. The speed brakes had no adverse effects on longitudinal stability.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54H24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: Dynamic--response measurements for various conditions of displacement and rate signal input, sensitivity setting, and simulated hinge moment were made of the three control-surface servo systems of an NAES-equipped remote-controlled airplane while on the ground. The basic components of the servo systems are those of the General Electric Company type G-1 autopilot using electrical signal. sources, solenoid-operated valves, and hydraulic pistons. The test procedures and difficulties are discussed, Both frequency and transient-response data, are presented and comparisons are made. The constants describing the servo system, the undamped natural frequency, and the damping ratio, are determined by several methods. The response of the system with the addition of airframe rate signal is calculated. The transfer function of the elevator surface, linkage, and cable system is obtained. The agreement between various methods of measurement and calculation is considered very good. The data are complete enough and in such form that they may be used directly with the frequency-response data of an airplane to predict the stability of the autopilot-airplane combination.
    Keywords: Aerodynamics
    Type: NACA-RM-SA50J05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.
    Keywords: Aerodynamics
    Type: NACA-RM-SE50J11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: Flight tests were conducted between Mach numbers of 0.9 and 1.8 over a Reynolds number range of 9(exp 6) to 30(exp 6) to determine the zero-lift drag and some rolling-effectiveness characteristics of the Northrop MX -775B missile with small and large body. The MX-775B is a proposed long range, supersonic, ground-to-ground missile having an arrow wing with 67.5 degree leading-edge sweep, 15 deg trailing-edge sweep, and a modified NACA 0004 airfoil section. The configuration has no horizontal tail but has wing trailing-edge elevons which serve a dual purpose as elevators and ailerons. The ratio of body frontal area to wing plan-form area is 0.0127 for the small-body configuration and 0.0330 for the large-body configuration. Five 1/4-scale models were flown permitting determination of the drag coefficient for the basic small-body configuration, the incremental drag due to the large body, the incremental drag resulting from a blunt wing trailing edge, the wing-plus-interference drag, and some rolling-effectiveness data. Results indicated that the MX-775B has low supersonic zero-lift drag, the maximum zero-lift drag coefficients being respectively 0.0125 and 0.0155 at a Mach number of M = 1803 for the small- and large-body configurations. The effect of a blunt wing trailing edge, obtained by cutting off 10 percent of the wing chord, was to increase the zero-lift drag by 13 to 21 percent. Wing-plus-interference drag accounted for 78 percent of the total drag at M = 0.9 and 70 percent at M = 195 for the small-body configuration. The ailerons produced positive rolling effectiveness for the wing stiffness of the test models and the dynamic pressures of the test.
    Keywords: Aerodynamics
    Type: NACA-RM-SL53J02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: The aerodynamic characteristics in pitch of an F-94C airplane, with the primary attention given to its drag characteristics, have been evaluated at low speed in the Ames 40- by 80-foot wind tunnel. The increments of drag due to various surface irregularities, ports, and component parts of the production airplane were determined. Wing-wake surveys were taken to determine the section drag coefficients at midsemispan for the smooth and the production wing. Base-pressure and internal drags of the air-induction system were measured at low inlet-velocity ratios. The characteristics of the airplane in the landing configuration are also included.
    Keywords: Aerodynamics
    Type: NACA-RM-SA52D25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: The data obtained from the flight of a simplified (dummy) rocket-propelled model of the MX-656 have been analyzed to determine the booster-model characteristics and the model-alone characteristics up to a Mach number of 1.3. The data indicate that the model-booster combination is satisfactory. The model alone is longitudinally stable i n the Mach number range covered by the test (0.9 to 1.3) with the center of gravity at -15 percent of the mean aerodynamic chord. With the stabilizer setting at 0 deg. the variation of normal-force coefficient with Mach number is not large. The total-drag-coefficient variation with Mach number is not unusual. About 12 percent of the total drag at a Mach number of 1.3 can be attributed to body base drag.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL50A07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: At the request of the Bureau of Aeronautics, Department of the Navy, National Advisory Committee for Aeronautics has conducted a preliminary investigation at high subsonic speeds of the static longitudinal and lateral stability characteristics of a 0.05-scale model of the Convair F2Y-1 water-based fighter airplane. The tests covered a Mach number range from 0.5 to 0.94 and corresponding Reynolds numbers, based on the wing mean aerodynamic chord, from 3.3 x 10(exp 6) to 4.3 x 10(exp 6). The maximum angle-of-attack range (obtained at the lower Mach numbers) was from -2 degrees to 25 degrees. Sideslip angles from -4 degrees to 12 degrees also were investigated. The investigation included effects of various arrangements of wing fences and of rocket packages.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54A12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: The performance of a 16-stage axial-flow compressor, in which two modifications of unloaded inlet stages were combined with loaded exit stages, has been determined. In the first modification the exit stages were loaded by decreasing the twelfth through fifteenth stage stator angles 3 deg. as compared with the blade angles in the original compressor, and the inlet stages were unloaded by increasing the blade angles the following amounts: guide vanes and first-stage stator, 6 deg; second- and third-stage stators, 4 deg.; and fourth-stage stators, 3 deg. The over-all performance of this configuration was compared with that of the compressor with the original blade angles. The peak efficiency was increased at all speeds below design and the weight flow was higher at speeds below 80 percent of design, the same at 80 percent of design, and lower at speeds abovce 80 percent of design. The maximum reduction in weight flow occurred at design speed. The surge limit line was higher at speeds between 75 and 90 percent of design when presented on a pressure ratio against weight flow basis. The second configuration was the same as the first with the exception that the second-, third-, and fourth-stage stator blade angles were the same as in the compressor with the original blade angles. A comparison of the performance of this configuration with that of the compressor with the original blade angles showed the same general trends of changes in performance as the first configuration. Comparisons were made of compressor configurations to show the effects upon the performance of decreased loading in the inlet stages. Below 75 percent of design speed, decreased loading results in increased weight flow and peak efficiency; above 80 percent of design speed, decreased loading in the inlet stages results in decreased weight flow and small changes in peak efficiencies. Between 75 and 90 percent of design the changes in surge weight flow and pressure ratio were such that the surge limit line was raised with decreased loading in the inlet stages when presented as pressure ratio against weight flow.
    Keywords: Aerodynamics
    Type: NACA-RM-E53C14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...