ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: During the flight program on the Bell X-5 airplane with 59 deg sweepback to determine the practical Mach number and normal-force coefficient limits of this configuration, a reduction in static longitudinal stability was encountered in maneuvering flight. A determination of the boundary for reduction of longitudinal stability extending to a Mach number of 0.98 is presented in this paper. A reduction of static longitudinal stability existed for all elevator and all stabilizer-executed maneuvers. The reduction of stability existed for maneuvers executed with elevator near a normal-force coefficient of 0.6 for a Mach number range of about 0.31 to 0.76. Above a Mach number of 0.76 the normal-force coefficient for reduction of stability gradually decreased to a value of 0.2 at a Mach number of 0.98. For stabilizer-executed maneuvers the stability boundary was the same as for elevator maneuvers up to a Mach number of 0.88. Above this Mach number the reduction of stability occurred at slightly higher normal-force coefficients decreasing from about 0.51 at a Mach number of 0.92 to a value of 0.311 at a Mach number of 0.97. The airplane has been flown to a Mach number of 1.04 at a normal-force coefficient of about 0.15 without encountering any reduction of stability. The pilot did not consider the reduction of stability to be dangerous at altitudes above 30,000 feet; however, precise flight was impossible. At angles of attack above that at which the reduction of longitudinal stability occurred, directional instability and aileron control overbalance were encountered.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L53A09b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52K18b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Flight measurements of the stability characteristics of the Bell X-5 research airplane at 59 deg sweepback were made in steady sideslips at Mach numbers from 0.62 to 0.97 at altitudes ranging between 35,000 and 40,000 feet. The results showed that the apparent directional stability was positive and increased at Mach numbers above 0.90. The apparent effective dihedral was positive and high, increasing at Mach numbers above 0.75. The cross-wind force coefficient per degree of sideslip was positive and increased rapidly at Mach numbers above 0.94.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L52K13b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: NACA instrumentation has been installed ii the X-J4 airplanes to obtain stability and control data during the acceptance tests conducted by the Northrop Aircraft Corporation. This report presents data obtained on the stalling characteristics of the airplane in the clean and gear- down configurations. The center of gravity was located at approximately 18 percent of the mean aerodynamic chord during the tests. The results indicated that the airplane was not completely stalled when stall was gradually approached during nominally U accelerated flight but that it was completely stalled during a more abruptly approached stall in accelerated flight. The stall in accelerated flight was relatively mild, and this was attributed to the nature of the variation of lift with angle of attack for the 001-614 airfoil section, the plan form of the wing, and to the fact that the initial sideslip at the stall produced (as shown by wind-tunnel tests of a model of the airplane) a more symmetrical stall pattern.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-A50A04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: Buffet boundaries, buffeting-load increments for the stabilizers and elevators, and buffeting bending-moment increments for the stabilizers and wings as measured in gradual maneuvers for a jet-powered bomber airplane are presented. The buffeting-load increments were determined from strain-gage measurements at the roots or hinge supports of the various surfaces considered. The Mach numbers of the tests ranged from 0.19 to 0.78 at altitudes close to 30,000 feet. The predominant buffet frequencies were close to the natural frequencies of the structural components. The buffeting-load data, when extrapolated to low-altitude conditions, indicated loads on the elevators and stabilizers near the design limit loads. When the airplane was held in buffeting, the load increments were larger than when recovery was made immediately.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-L50I06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: The effects of several wing leading-edge camber and deflected-tip modifications on the force and moment characteristics of a 1/20-scale model of the Convair F-102 airplane have been determined at Mach numbers from 0.60 t o 1.14 for angles of attack up to 14 deg. in the Langley 8-foot transonic tunnel. The effects of elevator deflections from 0 deg. to -10 deg. were also obtained for a configuration incorporating favorable leading- edge and tip modifications. Leading-edge modifications which had a small amount of constant-chord camber obtained by vertically adjusting the thickness distribution over the forward (3.9 percent of the mean aerodynamic chord) portion of the wing were ineffective in reducing the drag at lifting conditions at transonic speeds. Leading edges with relatively large cambers designed to support nearly elliptical span load distributions at lift coefficients of 0.15 and 0.22 near a Mach number of 1.0 produced substantial reductions in drag at most lift coefficients.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL54K29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-11
    Description: The static longitudinal stability characteristics of a 0.15-scale model of the Hermes A-lE2 missile have been determined in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.98, corresponding to Reynolds numbers, based on body length, of 12.3 x 10(exp 6) to 17.1 x 10(exp 6). This paper presents results obtained with body alone and body-fins combinations at 0 degrees (one set of fins vertical and the other set horizontal) and 45 degree angle of roll. The results indicate that the addition of the fins to the body insures static longitudinal stability and provides essentially linear variations of the lift and pitching moment at small angles of attack throughout the Mach number range. The slopes of the lift and pitching-moment curves vary slightly with Mach number and show only small effects due to the angle of roll.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52I10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL52G11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-11
    Description: An investigation was made to determine the static lateral stability and control characteristics of a l/6-scale model of the Republic XF-84H airplane with the propeller operating. The model had a 40deg swept wing of aspect ratio 3.45 and had a thin 3-blade supersonic-type propeller. Many modifications to the basic configuration were investigated in attempts to alleviate lateral and directional trim problems which appeared to be associated with propeller slipstream rotation. Although significant benefits were realized with several modifications, none of those tested would be expected to afford satisfactory behavior for all normal flight conditions. A marked left-wing roll-off tendency was indicated at high angles of attack for the basic model configuration. Projection of only the left slat was the most effective remedy found for this problem with the propeller operating. The use of differential wing-flap deflection also appeared to offer a promising means for reducing the roll-off tendency with power on. The large sidewash over the vertical tail, associated with slip- stream rotation, severely restricted the conditions for which directional , trim could be maintained. A small triangular dorsal fin, oriented opposite to the slipstream rotation, was found very effective in reducing the adverse sidewash flow at the tail.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53G10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Convair YF-102 airplane has been made in the Langley free-flight tunnel. The model was flown over a lift-coefficient range from 0.5 to the stall in its basic configuration and with several modifications involving leading-edge slats and increases in vertical-tail size. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect of freeing the controls. The longitudinal stability characteristics of the model were considered satisfactory for all conditions investigated. The lateral stability characteristics were considered satisfactory for the basic configuration over the speed range investigated except near the stall, where large values of static directional instability caused the model to be directionally divergent. The addition of leading-edge slats or an 8-percent increase in vertical-tail area increased the angle of attack at which the model became directionally divergent. The use of leading-edge slats in combination with a 40-percent increase in vertical-tail size eliminated the directional divergence and produced satisfactory stability characteristics through the stall. The longitudinal and lateral control characteristics were generally satisfactory. Although the adverse sideslip characteristics for the model were considered satisfactory over the angle-of-attack range, analysis indicates that the adverse sideslip characteristics of the airplane may be objectionable at high angles of attack.
    Keywords: Aircraft Stability and Control
    Type: NACA-RM-SL53L04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...