ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Maps
  • Other Sources  (12)
  • Aircraft Propulsion and Power  (12)
  • 1955-1959  (12)
  • 1959  (12)
  • 1
    Publication Date: 2019-05-11
    Description: Three highly polished 15- included- angle cone- cylinders with hemispherical tips of several diameters ( 2, 3, and 4 in.) have been flown in order to obtain boundary- layer transition data at very low wall to local stream temperature ratios, and heat- transfer data. All surfaces had a 2-microinch average roughness height. Laminar flow existed over the entire hemispherical nose of the 2- and 3-inch-tip- diameter models throughout the complete flight history. Extreme cooling to wall to local stream temperature ratios at the sonic point as low as 0.20 did not cause transition on the nose for diameters as large as 3 inches. However, extreme cooling did cause early transition on the 4-inch model where it appears probable that transition occurred forward of the 45 station at a wall to local stream temperature ratio of about 0.26. Variations in tip diameter influenced transition downstream of the nose under conditions of extreme cooling. The 2-inch- tip model was laminar at all cone- cylinder stations at temperature ratios as low as 0.32 whereas the 3- and 4-inch-tip models were turbulent at the same local flow conditions but at higher wall to local temperature ratios. Transition on the cone and cylinder of the 3- and 4-inch- tip bodies appeared to be sensitive to local Mach number, and occurred at higher local temperature ratios when values of local Mach number were higher. Increasing the nose diameter from 2 to 3 inches significantly changed the local flow conditions for which laminar flow existed on the cone- cylinder afterbody. However, a further increase in tip size t o a 4-inch diameter had no discernable effect on the local flow conditions at transition. The transition results of the 3- and 4-inch-nose-diameter smooth bodies are similar to those observed on a 7/8-inch-nose-diameter body with roughened surfaces. Turbulent boundary layers resulted in both cases at very low wall to local stream temperature ratios. Both laminar and turbulent heat-transfer data were in good agreement with theoretical Stanton numbers when heat-transfer reduction due to tip blunting was considered.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-3-4-59E , GRC-E-DAA-TN65086
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-17
    Description: The effect of stator and rotor aspect ratio on transonic-turbine performance was experimentally investigated. The stator aspect ratios covered were 1.6. 0.8, and 0.4, while the rotor aspect ratios investigated were 1.46 and 0.73. It was found that the observed variation in turbine design-point efficiency was negligible. Thus, within the range of aspect ratio investigated, these results verify for turbines operating in the transonic flow range the finding of a reference report, which showed analytically that, if blade shape and solidity are held constant, the aspect ratio may be varied over a wide range without appreciable change in turbine efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-11-59E , E-177
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: The suitability of cermets for turbine stator blades of a modified turbojet engine was determined at an average turbine-inlet-gas temperature of 2000 F. Such an increase in temperature would yield a premium in thrust from a service engine. Because the cermet blades require no cooling, all the available compressor bleed air could be used to cool a turbine made from conventional ductile alloys. Cermet blades were first run in 100-hour endurance tests at normal gas temperatures in order to evaluate two methods for mounting them. The elevated gas-temperature test was then run using the method of support considered best for high-temperature operation. After 52 hours at 2000 F, one of the group of four cermet blades fractured probably because of end loads resulting from thermal distortion of the spacer band of the nozzle diaphragm. Improved design of a service engine would preclude this cause of premature failure.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-13-59E , E-147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-2-9-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-16
    Description: The design and experimental investigation of a 4.5-inch-mean-diameter two-stage turbine are presented herein and used to study the effect of size on the efficiency of turbines in the auxiliary power drive class. The results of the experimental investigation indicated that design specific work was obtained at design speed at a total-to-static efficiency of 0.639. At design pressure ratio, design static-pressure distribution through the turbine was obtained with an equivalent specific work output of 33.2 Btu per pound and an efficiency of 0.656. It was found that, in the design of turbines in the auxiliary power drive class, Reynolds number plays an important part in the selection of the design efficiency. Comparison with theoretical efficiencies based on a loss coefficient and velocity diagrams are presented. Close agreement was obtained between theory and experiment when the loss coefficient was adjusted for changes in Reynolds number to the -1/5 power.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-6-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-15
    Description: The performance of turbine-engine combustors usually is given in terms of operating limits and combustion efficiency. The latter property is determined most often by measuring the increase in enthalpy across the combustor through the use of thermocouples. This investigation was conducted to determine the ability of gas-analytical techniques to provide additional information about combustor performance. Gas samples were taken at the outlet and two upstream stations and their compositions determined. In addition to over-all combustion efficiency, estimates of local fuel-air ratios, local combustion efficiencies, and heat-release rates can be made. Conclusions can be drawn concerning the causes of combustion inefficiency and may permit corrective design changes to be made more intelligently. The purpose of this investigation was not to present data for a given combustor but rather to show the types and value of additional information that can be gained from gas-analytical data.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-1-26-59E , E-245
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: An investigation was conducted to determine the flameholding capabilities of aerodynamic jets at afterburner operating conditions. Stability data for a number of aerodynamic flameholders were obtained in a 5- by 5-inch test section at inlet-air reference velocities up to 600 feet per second, an inlet-air temperature of 1250 F, and a combustor-inlet pressure of 15 inches of mercury absolute. Combustion efficiency and stability data of the more promising combinations were then obtained in a 10- by 12-inch test section at the same test conditions. Both air and stoichiometric mixtures of fuel and air were used in the jets; mixture flow rates were approximately 1 percent by weight of the total air-flow rate. Injection pressures were limited to values that might be available from compressor-bleed air. At a reference velocity of 600 feet per second, aerodynamic flame-holders alone were unable to maintain a stable flame at injection pressures up to 70 pounds per square inches large reductions in velocity were required to achieve flame stabilization. When the aerodynamic jets were used in combination with a V-gutter flameholder with approximately a 30 percent blocked area, flame stabilization was attained at a velocity of 600 feet per second; however, the combustion efficiencies of the various combinations were no greater than that obtained with the V-gutter alone.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-9-59E
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: Incompressible-flow calculations were performed to determine the effects of combustor geometric and operating variables on pressure loss and airflow distribution in a tubular combustor with a tapered liner. The calculations include the effects of momentum transfer between annulus and liner gas streams, annulus wall friction, heat release, and discharge coefficients of liner air-entry holes. Generalized curves are presented which show the effects of liner-wall inclination, liner open hole area, and temperature rise across the combustor on pressure loss and airflow distribution for a representative parabolic liner hole distribution. A comparison of the experimental data from 12 tapered liners with the theoretical calculations indicates that reasonable design estimates can be made from the generalized curves. The calculated pressure losses of the tapered liners are compared with those previously reported for tubular liners.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-11-26-58E , E-126
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: A comparison of the performance of a single-stage rotor run at three different blade setting angles is presented. The rotor was of a design typical for a last stage of a multistage compressor. At each setting angle, the rotor blade row was operated from 53 to 100 percent of equivalent maximum speed (850 ft/sec tip speed) at constant inlet pressure. Hot-wire anemometry was used to observe rotating-stall and surge patterns in time unsteady flow. Results indicated that an increase in peak pressure ratio and an increase in maximum equivalent weight flow were obtained at each speed investigated when the blade setting angle was decreased. An increase in peak efficiency was achieved with decrease in blade setting angle for part of the range of speeds investigated. However, the peak efficiencies for the three blade setting angles were approximately the same at the maximum speed investigated. The flow ranges for all three configurations were about the same at minimum speed and decreased at almost the same rate when the rotative speed was increased through part of the range of speeds investigated. At maximum speed, the flow range for the smallest setting angle was considerably less than the flow range for the other two configurations. A decrease in efficiency and flow range for the smallest blade setting angle at maximum speed can be attributed primarily to a Mach number effect. In addition, because of the difference in projected axial chord lengths at the casing wall, some effect on performance could be expected from the change in three-dimensional flow occurring at the tip. Rotating-stall characteristics for the two smaller blade setting angles were essentially the same. Only surge could be detected for the largest blade setting angle in the unstable-flow region of operation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-11-27-58E , E-117
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-15
    Description: High-altitude turbojet performance is adversely affected by the effects of low air density. This performance loss is evaluated as a Reynolds number effect, which represents the increased significance of high fluid viscous forces in relation to dynamic fluid forces as the Reynolds number is decreased. An analytical and experimental investigation of the effects of low Reynolds number operation on a single-stage, high-work-output turbine with a downstream stator was carried out at Reynolds numbers of 182,500, 39,600, and 23,000, based on average rotor-design flow conditions. At low Reynolds numbers and turbulent flow conditions, increased viscous losses caused decreased effective flow area, and thus decreased weight flow, torque, and over-all efficiency at a given equivalent speed and pressure ratio. Decreasing the Reynolds number from 182,500 to 23,000 at design equivalent speed resulted in a 5.00-point loss in peak over-all turbine efficiency for both theory and experiment. The choking equivalent weight flow decreased 2.30 percent for these conditions. Limiting loading work output was reached at design equivalent speed for all three Reynolds numbers. The value of limiting loading work output at design speed decreased 4.00 percent as Reynolds number was decreased from 182,500 to 23,000. A theoretical performance-prediction method using basic boundary-layer relations gave good agreement with experimental results over most of the performance range at a given Reynolds number if the experimental and analytical design operating conditions were carefully matched at the highest Reynolds number with regard to design performance parameters. High viscous losses in the inlet stator and rotor prevented the attainment of design equivalent work output at the lowest Reynolds number of 23,000.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-X-9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-16
    Description: Five engine tests were conducted to definitely establish the failure mechanism of leading-edge cracking and to determine which conditions of engine operation cause the failures. Five groups of S-616 and M-252 buckets from master lots were run consecutively in the same J47-25 engine. The tests included a steady-state run at full-power conditions, rapid cycling between idle and rated speed, and three different start-stop tests. The first start-stop test consisted of cycles of start and stop with 5 minutes of idle speed before each stop; the second included cycles of start and stop but with 15 minutes of rated speed before each stop; the third consisted of cycles of gradual starts and normal stops with 5 minutes at idle speed before each stop. The test results demonstrated that the primary cause of leading-edge cracking was thermal fatigue produced by repeated engine starts. The leading edge of the bucket experiences plastic flow in compression during starts and consequently is subjected to a tensile stress when the remainder of the bucket becomes heated and expands. Crack initiation was accelerated when rated-speed operation was added to each normal start-stop cycle. This acceleration of crack formation was attributed to localized creep damage and perhaps to embrittlement resulting from overaging. It was demonstrated that leading-edge cracking can be prevented simply by starting the engine gradually.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-MEMO-4-7-59E , E-281
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-16
    Description: In order to determine the effect of a low design diffusion factor on the performance of a transonic axial-flow compressor rotor, a high-specific-flow rotor with a 0.35 hub-tip radius ratio was designed, fabricated and tested. This rotor used a design tip diffusion factor of 0.20 with a design corrected specific weight flow of 40 pounds per second per square foot of frontal area, a total-pressure ratio of 1.27, and an adiabatic efficiency of 0.96. The design, rotor performance, and blade element performance are presented with a discussion on rotor shock losses and a comparison with a similarly designed rotor with a tip diffusion factor of 0.35. At the design corrected tip speed of 1100 feet per second, a peak rotor adiabatic efficiency of 0.88 was attained at a corrected specific weight flow of 39 pounds per second per square foot of frontal area with a mass-averaged total-pressure ratio of 1.27. The blade element tip diffusion factor was 0.281, which is 0.08 higher than the design value of 0.20. Peak efficiencies of 0.95, 0.91, 0.89, and 0.85 were obtained at 70, 80, 90, and 110 percent of design speed, respectively. Comparison of the performance of the rotor reported herein and a similarly designed rotor with increased blade loading indicates that higher blade loading results in a more desirable rotor because of a higher pressure ratio and equivalent efficiency. Computed values of shock losses at the rotor tip section indicate that the losses at peak efficiency are primarily a function of shock losses since the profile losses are only a small percentage of the total loss.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-X-86
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...