ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Propulsion and Power  (16)
  • 1950-1954  (16)
  • 1952  (6)
  • 1950  (10)
  • 1
    Publication Date: 2019-07-12
    Description: An investigation to increase the compressor surge-limit pressure ratio of the XJ40-WE-6 turbojet engine at high equivalent speeds was conducted at the NACA Lewis altitude wind tunnel. This report evaluates the compressor modifications which were restricted to (1) twisting rotor blades (in place) to change blade section angles and (2) inserting new stator diaphragms with different blade angles. Such configuration changes could be incorporated quickly and easily in existing engines at overhaul depots. It was found that slight improvements in the compressor surge limit were possible by compressor blade adjustment. However, some of the modifications also reduced the engine air flow and hence penalized the thrust. The use of a mixer assembly at the compressor outlet improved the surge limit with no appreciable thrust penalty.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE52G03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-11
    Description: An investigation was conducted at simulated high-altitude flight conditions to evaluate the use of compressor evaporative cooling as a means of turbojet-engine thrust augmentation. Comparison of the performance of the engine with water-alcohol injection at the compressor inlet, at the sixth stage of the compressor, and at the sixth and ninth stages was made. From consideration of the thrust increases achieved, the interstage injection of the coolant was considered more desirable preferred over the combined sixth- and ninth-stage injection because of its relative simplicity. A maximum augmented net-thrust ratio of 1.106 and a maximum augmented jet-thrust ratio of 1.062 were obtained at an augmented liquid ratio of 2.98 and an engine-inlet temperature of 80 F. At lower inlet temperatures (-40 to 40 F), the maximum augmented net-thrust ratios ranged from 1.040 to 1.076 and the maximum augmented jet-thrust ratios ranged from 1.027 to 1.048, depending upon the inlet temperature. The relatively small increase in performance at the lower inlet-air temperatures can be partially attributed to the inadequate evaporation of the water-alcohol mixture, but the more significant limitation was believed to be caused by the negative influence of the liquid coolant on engine- component performance. In general, it is concluded that the effectiveness of the injection of a coolant into the compressor as a means of thrust augmentation is considerably influenced by the design characteristics of the components of the engine being used.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E52F20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: An investigation was made of the performance of nine conical cooling-air ejectors at primary jet pressure ratios from 1 to 10, secondary pressure ratios to 4.0, and a temperature ratio of unity. This phase of the investigation was limited to conical ejectors having shroud exit to primary nozzle exit diameter ratios of 1.06 and 1.40, with several spacing ratios for each. The experimental results indicated that the pumping range and amount of cooling-air flow obtained with a 1.06 diameter ratio ejector were relatively small for cooling purposes but that the maximum possible thrust loss, which occurred with no secondary flow, was only 7 percent of convergent nozzle thrust. The 1.40 diameter ratio ejector produced a large cooling air flow and showed a possible thrust loss of 29.5 percent with no cooling air flow. Thrust gains were attained with ejectors of both diameter ratios at secondary pressure ratios greater than 1.0. The limiting primary pressure ratio below which an ejector can operate at a specific secondary pressure ratio (cut-off point) may be estimated for various flight conditions from data contained herein.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E52F26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The stator-blade angles in the twelfth to fifteenth stages of a 16-stage high-pressure-ratio axial-flow compressor were decreased 3 deg The over-all performance of this compressor is compared with the performance of the same compressor with standard blade angles. The matching characteristics of the modified compressor and a two-stage turbine were also obtained and compared with those of the compressor with the original blade angles and the same turbine.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E51L03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: A theoretical method for evaluating the stability characteristics and the amplitude and the frequency of pulsation of ram-jet engines without heat addition is presented herein. Experimental verification of the theoretical results are included where data were available. Theory and experiment show that the pulsation amplitude of a high mass-flow-ratio diffuser having no cone surface flow separation increases with decreasing mass flow. The theoretical trends for changes in amplitude, frequency, and mean-pressure recovery with changes in plenum-chamber volume were experimentally confirmed. For perforated convergent-divergent-type diffusers, a stability hysteresis loop was predicted on the pressure-recovery mass-flow-ratio curve. At a given mean mass-flow ratio, the higher.value of mean pressure recovery corresponded to oscillatory flow in the diffuser while the lower branch was stable. This hysteresis has been observed experimentally. The theory indicates that for a ram-jet engine of given diameter, the amplitude of pulsation of a supersonic diffuser is increased by decreasing the relative size of the plenum chamber with respect to the diffuser volume down to a critical value at which oscillations cease. In the region of these critical values, the stable mass-flow range of the diffuser may be increased either by decreasing the combustion chamber volume or by increasing the length of the diffuser.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E52I24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: An investigation of the effect of inlet pressure, corrected engine speed, and turbine temperature level on turbine-inlet gas temperature distributions was conducted on a J40-WE-6, interim J40-WE-6, and prototype J40-WE-8 turbojet engine in the altitude wind tunnel at the NAC.4 Lewis laboratory. The engines were investigated over a range of simulated pressure altitudes from 15,000 to 55,000 feet, flight Mach numbers from 0.12 to 0.64, and corrected engine speeds from 7198 to 8026 rpm, The gas temperature distribution at the turbine of the three engines over the range of operating conditions investigated was considered satisfactory from the standpoint of desired temperature distribution with one exception - the distribution for the J40-WE-6 engine indicated a trend with decreasing engine-inlet pressure for the temperature to exceed the desired in the region of the blade hub. Installation of a compressor-outlet mixer vane assembly remedied this undesirable temperature distribution, The experimental data have shown that turbine-inlet temperature distributions are influenced in the expected manner by changes in compressor-outlet pressure or mass-flow distribution and by changes in combustor hole-area distribution. The similarity between turbine-inlet and turbine-outlet temperature distribution indicated only a small shift in temperature distribution imposed by the turbine rotors. The attainable jet thrusts of the three engines were influenced in different degrees and directions by changes in temperature distributions with change in engine-inlet pressure. Inability to match the desired temperature distribution resulted, for the J40-WE-6 engine, in an 11-percent thrust loss based on an average turbine-inlet temperature of 1500 F at an engine-inlet pressure of 500 pounds per square foot absolute. Departure from the desired temperature distribution in the Slade tip region results, for the prototype J40-WE-8 engine, in an attainable thrust increase of 3 to 4 percent as compared with that obtained if tip-region temperature limitations were observed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E52H06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TN-2227
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-974 , NACA-ACR-L6D02 , NACA-AR-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-16
    Description: Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1259
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-11
    Description: An investigation was conducted to determine the effects of water injection on the over-all performance of a modified J33-A-27 turbojet-engine compressor at the design equivalent speed of 11,800 rpm. The water-air ratio by weight was 0.05. With water injection the peak pressure ratio increased 9.0 per- cent, the maximum efficiency decreased 15 percent (actual numerical difference 0.12), and. the maximum total weight flow increased 9.3 percent.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50F14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-11
    Description: The compressor from the XT-46 turbine-propeller engine was revised by removing the last two rows of stator blades and by eliminating the interstage leakage paths described in a previous report. With the revised compressor, the flow choking point shifted upstream into the last rotor-blade row but the maximum weight flow was not increased over that of the original compressor. The flow range of the revised compressor was reduced to about two-thirds that obtained with the original compressor. The later stages of the compressor did not produce the design static-pressure increase probably because of excessive boundary-layer build-up in this region. Measurements obtained in the ninth-stage stator showed that the performance up to this station was promising but that the last three stages of the compressor were limiting the useful operating range of the preceding stages. Some modifications in flow-passage geometry and blade settings are believed to be necessary, however, before any major improvements in over-all compressor performance can be obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50J10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-11
    Description: The power plant from a Mark 25 aerial torpedo was investigated both as a two-stage turbine and as a single-stage modified turbine to determine the effect on overall performance of nozzle size and shape, first-stage rotor-blade configuration, and axial nozzle-rotor running clearance. Performance was evaluated in terms of brake, rotor, and blade efficiencies. All the performance data were obtained for inlet total to outlet static pressure ratios of 8, 15 (design), and 20 with inlet conditions maintained constant at 95 pounds per square inch gage and 1000 F for rotor speeds from approximately 6000 to 18,000 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50D12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-11
    Description: Performance data obtained with recording oscillographs are presented to show the transient response of the General Electric Integrated Electronic Control operating on the J47 RXl-3 turbo-Jet engine over a range of altitudes from 10,000 to 45,000 feet and at ram pressure ratios of 1.03 and 1.4. These data represent the performance of the final control configuration developed after an investigation of the engine transient behavior in the NACA altitude wind tunnel. Oscillograph traces of controlled accelerations (throttle bursts),oontrolled decelerations (throttle chops), and controlled altitude starts are presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50G12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-11
    Description: A modified J33-A-27 compressor was operated over a range of equivalent impeller speeds from 6100 to 13,250 rpm in order to obtain the over-all compressor performance. At the equivalent design speed of 11,800 rpm, the maximum efficiency of 0.764 and peak pressure ratio of 4.56 occurred at an equivalent weight flow of 104.07 pounds per second. At the highest equivalent speed (13,250 rpm) a maximum efficiency of 0.711, a maximum equivalent weight flow of 123.00 pounds per second, and a peak pressure ratio of 5.76 were obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50D25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: An investigation is being conducted to determine the performance of the 12-stage axial-flow compressor of the XT-46 turbine-propeller engine. This compressor was designed to produce a pressure ratio of 9 at an adiabatic efficiency of 0.86. The design pressure ratios per stage were considerably greater than any employed in current aircraft gas-turbine engines using this type of compressor. The compressor performance was evaluated at two stations. The station near the entrance section of the combustors indicated a peak pressure ratio of 6.3 at an adiabatic efficiency of 0.63 for a corrected weight flow of 23.1 pounds per second. The other, located one blade-chord downstream of the last stator row, indicated a peak pressure ratio of 6.97 at an adiabatic efficiency of 0.81 for a corrected weight flow of 30.4 pounds per second. The difference in performance obtained at the two stations is attributed to shock waves in the vicinity of the last stator row. These shock waves and the accompanying flow choking, together with interstage circulatory flows, shift the compressor operating curves into the region where surge would normally occur. The inability of the compressor to meet design pressure ratio is probably due to boundary-layer buildup in the last stages, which cause axial velocities greater than design values that, in turn, adversely affect the angles of attack and turning angles in these blade rows.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE50E22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...