ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Design, Testing and Performance  (30)
  • 1950-1954  (30)
  • 1952  (11)
  • 1950  (19)
  • 1
    Publication Date: 2019-06-28
    Description: A cascade of 65-(12)10 compressor blades was tested at one geometric setting over a range of inlet Mach number from 0.12 to 0.89. Two groups of data are presented and compared: the first from the cascade operating conventionally with no boundary-layer control, and the second with the boundary layer controlled by a combination of upstream slot suction and porous-wall suction at the blade tips. A criterion for two-dimensionality was used to specify the degree of boundary-layer control by suction to be applied. The data are presented and an analysis is made to show the effect of Mach number on turning angle, blade wake, pressure distribution about the blade profile and static-pressure rise. The influence of boundary-layer control on these parameters as well as on the secondary losses is illustrated. A system of correlating the measured static-pressure rise through the cascade with the theoretical isentropic values is presented which gives good agreement with the data. The pressure distribution about the blade profile for an inlet Mach number of 0.21 is corrected with the Prandtl-Glauert, Karman-Tsien, and vector-mean velocity - contraction coefficient compressibility correction factors to inlet Mach numbers of 0.6 and 0.7. The resulting curves are compared with the experimental pressure distributions for inlet Mach numbers of 0.6 and 0.7 so that the validity of applying the three corrections can be evaluated.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-2649
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The stator-blade angles in the twelfth through fifteenth stages of a 16-stage axial-flow compressor were increased 3O. The over-all performance of this modified compressor is compared to the performance of the compressor with original blade angles. The matching characteristics of the modified compressor and a two-stage turbine were obtained and compared to those of the compressor with original blade angles and the same turbine.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E52A10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-14
    Description: An impulse-momentum method for determining impact conditions for landing gears in eccentric landings is presented. The analysis is primarily concerned with the determination of contact velocities for impacts subsequent to initial touchdown in eccentric landings and with the determination of the effective mass acting on each landing gear. These parameters determine the energy-absorption requirements for the landing gear and, in conjunction with the particular characteristics of the landing gear, govern the magnitude of the ground loads. Changes in airplane angular and linear velocities and the magnitude of landing-gear vertical, drag, and side impulses resulting from a landing impact are determined by means of impulse-momentum relationships without the necessity for considering detailed force-time variations. The effective mass acting on each gear is also determined from the calculated landing-gear impulses. General equations applicable to any type of eccentric landing are written and solutions are obtained for the particular cases of an impact on one gear, a simultaneous impact on any two gears, and a symmetrical impact. In addition a solution is presented for a simplified two-degree-of-freedom system which allows rapid qualitative evaluation of the effects of certain principal parameters. The general analysis permits evaluation of the importance of such initial conditions at ground contact as vertical, horizontal, and side drift velocities, wing lift, roll and pitch angles, and rolling and pitching velocities, as well as the effects of such factors as landing gear location, airplane inertia, landing-gear length, energy-absorption efficiency, and wheel angular inertia on the severity of landing impacts. -A brief supplementary study which permits a limited evaluation of variable aerodynamic effects neglected in the analysis is presented in the appendix. Application of the analysis indicates that landing-gear impacts in eccentric landings can be appreciably more severe than impacts in symmetrical landings with the same sinking speed. The results also indicate the effects of landing-gear location, airplane inertia, initial wing lift, side drift velocity, attitude, and initial rolling velocity on the severity of both initial and subsequent landing-gear impacts. A comparison of the severity of impacts on auxiliary gears for tricycle and quadricycle configurations is also presented.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-2596
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: An elementary type of analysis has been used to determine the amount of wing tip that must be severed to produce irrevocable loss of control of a B-29 airplane. The remaining inboard structure of the Boeing B-29 wing has then been analyzed and curves are presented for the estimated reduction in structural strength due to four general types of damage produced by rod-type warhead fragments. The curves indicate the extent of structural damage required to produce a kill of the aircraft within 10 seconds.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L52H01A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: As part of a program to determine the feasibility of using a fighter airplane as a parasite in combination with a Consolidated Vultee RB-36 for long-range reconnaissance missions (project FICON), an experimental investigation has been made in the Langley free-flight tunnel to determine the dynamic stability and control characteristics of a 1/17.5-scale model of a Chance Vought F7U-3 airplane in several tow configurations. The investigation consisted of flight tests in which the model was towed from a strut in the tunnel by a towline and by a direct coupling which provided complete angular freedom. The tests with the direct coupling also included a study of the effect of spring restraint in roll in order to simulate approximately the proposed full-scale arrangement in which the only freedom is that permitted by the flexibility of the launching and retrieving trapeze carried by the-bomber. For the tow configurations in which a towline was used (15 and 38 feet full scale), the model had a very unstable lateral oscillation which could not be controlled. The stability was also unsatisfactory for the tow configuration in Which the model was coupled directly to the strut with complete angular freedom. When spring restraint in roll was added, however, the stability was satisfactory. The use of the yaw damper which increased the damping in yaw to about six times the normal value of the model appeared to have no appreciable effect on the lateral oscillations in the towline configurations, but produced a slight improvement in the case of the direct coupling configurations. The longitudinal stability was satisfactory for those cases in which the lateral stability was good enough to permit study of longitudinal motions.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL53D07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-11
    Description: Tests have been made at the Langley Aeronautical Laboratory on a 6000-horsepower propeller dynamometer installed at a ground test facility to determine the effect of a half-scale model of the Wright Aeronautical Development Center 30,000-horsepower whirl rig upon the aerodynamic characteristics of a three-blade NACA 10-(3)(062)-045 propeller. The model of the whirl rig was mounted in front of the 6000-horsepower propeller dynamometer. Static propeller tests were made for 0deg, 5deg, 10deg, 15deg, and 20deg blade angles over a range of rotational speeds from 600 to 2200 rpm in 100-rpm increments. Measurements were made of propeller thrust and torque, stresses in the propeller blades, and static and total pressures over the surface of the model. Propeller thrust and torque were increased up to 33 percent by the presence of the model of the whirl rig, but the average increase was from 5 to 10 percent. Blade vibratory stresses were small.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL52F20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-11
    Description: The aerodynamic characteristics in pitch of the Army Ordnance Corps T205 3.5-inch HEAT rocket with various head designs and one fin modification have been determined at velocities of 500, 700 and 900 feet per second in the Langley high-speed 7- by 10-foot tunnel. The results presented are those of the full-scale model. Comparison of results obtained at 500 feet per second shows, in general, that for changes on the forward portion of the head the missile configurations having the greatest stability - most rearward center-of-loads location - were those having the highest drag. However, very limited comparisons indicate that the shape of the rear position of the head may be an important factor in reducing the drag and increasing the restoring moments. Generally, large increases in drag were noted for the various head designs with an increase in Mach number from 0.62 to 0.82. Pitching-moment-curve slopes increased with Mach number on all models except those having reasonably well-faired forward sections. These models showed a decrease in stability with increases in Mach number.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL52G15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: Preliminary results of one phase of a control-motion study program are presented in the form of plots of load factor.and angular acceleration against indicated airspeed and of time histories of several measured quantities. The results were obtained from 197 maneuvers performed by an F-86A jet-fighter airplane during normal squadron operational training. Most of the tactical maneuver8 of which the F-86A is capable were performed at pressure altitudes ranging from 0 to 32,000 feet and at indicated airspeeds ranging from 95 to 650 miles per hour.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L52C19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Force characteristics determined from tank tests of a 1/5.78 scale model of a hydro-ski-wheel combination for the Grumman JRF-5 airplane are presented. The model was tested in both the submerged and planing conditions over a range of trim, speed, and load sufficiently large to represent the most probable full-size conditions.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SLS2B28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: An investigation was conducted in the Ames 12-foot pressure wind tunnel to determine the effect of an operating propeller on the aerodynamic characteristics of a l/l9-scale model of the Lockheed XFV-1 airplane, Several full-scale power conditions were simulated at Mach numbers from 0.50 to 0.92; the.Reynolds number was constant at 1,7 million. Lift, longitudinal force, pitch, roll, and yaw characteristics, determined with and without power, are presented for the complete model and for various combinations of model components, Results of an investigation to determine the characteristics of the dual-rotating propeller used on the model are given also,
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SA52E06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-12
    Description: The stator-blade angles in the first four stages of a 16-stage axial-flow compressor were increased in order to decrease the angles of attack of these stages, and thereby to improve part-speed performance. The performance of this modified compressor was compared with that of the same compressor with original blade angles.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E52B15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: The autorotative performance of an assumed helicopter was studied to determine the effect of inoperative jet units located at the rotor-blade tip on the helicopter rate of descent. For a representative ramjet design, the effect of the jet drag is to increase the minimum rate of descent of the helicopter from about 1,OO feet per minute to 3,700 feet per minute when the rotor is operating at a tip speed of approximately 600 feet per second. The effect is less if the rotor operates at lower tip speeds, but the rotor kinetic energy and the stall margin available for the landing maneuver are then reduced. Power-off rates of descent of pulse-jet helicopters would be expected to be less than those of ramjet. helicopters because pulse jets of current design appear to have greater ratios of net power-on thrust to power-off, drag than currently designed rain jets. Iii order to obtain greater accuracy in studies of autorotative performance, calculations in'volving high power-off rates of descent should include the weight-supporting effect of the fuselage parasite-drag force and the fact that the rotor thrust does not equal the weight of the helicopter.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-2154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: Free-flight tests have been made to determine the zero-lift drag of several configurations of the XAAM-N-2 pilotless aircraft. Base-pressure measurements were also obtained for some of the configurations. The results show that increasing the wing-thickness ratio from 4 to 6 percent increased the wing drag by about 100 percent at M = 1.3 and by about 30 percent at M = 1.8. Increasing the nose fineness ratio from 5.00 to 6.25 reduced the drag coefficient of the wingless models a maximum of about 0.030 (10 percent) at M = 2.0. A corresponding change in nose shape for the winged models decreased the drag coefficient by about 0.05 in the Mach number range from 1.1 to 1.4; at Mach numbers greater than 1.6 no measurable reduction in drag coefficient was obtained. The drag of the present Sparrow fuselage is less than that of a parabolic fuselage which could contain the same equipment.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50C16a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-13
    Description: The study of the hydrodynamic properties of planing bottom of flying boats and seaplane floats is at the present time based exclusively on the curves of towing tests conducted in tanks. In order to provide a rational basis for the test procedure in tanks and practical design data, a theoretical study must be made of the flow at the step and relations derived that show not only qualitatively but quantitatively the inter-relations of the various factors involved. The general solution of the problem of the development of hydrodynamic forces during the motion of the seaplane float or flying boat is very difficult for it is necessary to give a three-dimensional solution, which does not always permit reducing the analysis to the form of workable computation formulas. On the other had, the problem is complicated by the fact that the object of the analysis is concerned with two fluid mediums, namely, air and water, which have a surface of density discontinuity between them. The theoretical and experimental investigations on the hydrodynamics of a ship cannot be completely carried over to the design of floats and flying-boat hulls, because of the difference in the shape of the contour lines of the bodies, and, because of the entirely different flow conditions from the hydrodynamic viewpoint.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1246 , Materialy po Gidrodinamicheskomu Raschetu Glisserov i Gidrosamoletov; 1-39; CAHI-Rept-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-11
    Description: A wind-tunnel investigation has been conducted to determine the stability and control characteristics of a full-size model of the Hughes MX-904 missile. Aerodynamic characteristics of the complete model through moderate ranges of angles of attack and yaw, with an additional test made through an angle of attack of 180 degrees, are presented. The effects of horizontal tail deflection are also included.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL9D28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-11
    Description: A ditching investigation of a model of the Convair-Liner airplane was made to observe the behavior and determine the safest procedure for making an emergency water landing. The ditching model was designed and constructed by the National Advisory Committee for Aeronautics. Design information on the airplane was furnished by the Consolidated Vultee Aircraft Corporation. A three-view drawing of the airplane is shown. The investigation was made in calm water at the Langley tank no. 2 monorail.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50K02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-11
    Description: An investigation has been made in the Langley gust tunnel with two identical airplane models approximating 1/40-scale models of the B-29, coupled in tandem with a boom so that the individual centers of gravity were equidistant from the single coupling joint at the tail of the lead airplane. Time histories of the boom joint load were obtained as the models were flown through a gust. The results indicate that on a similar configuration involving airplanes the size of B-29 airplanes a load on the boom joint of 10,000 to 14,000 pounds could be induced by encountering a gust of 50 feet per second and having a gradient distance of 17 chords, at a forward speed of 380 feet per second and that the total load is extremely sensitive to the steadiness of flight that can be maintained with or without a gust. It is felt that the results are probably satisfactory to show order of magnitude, but it does not appear possible that a precise determination of the joint load that would be applicable to the full-scale airplanes can be obtained by gust-tunnel tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL51E01A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-11
    Description: Flight tests have been conducted on rocket-propelled models of an airplane configuration incorporating a sweptback wing with inverse taper to investigate the drag, stability, and control characteristics at transonic and supersonic speeds. The models were tested with a conventional tail arrangement in the Mach number range from 0.55 to 1.2. In addition to the various aerodynamic parameters obtained, the flying qualities were computed for a full-scale airplane with the center-of-gravity location at 18 percent of the mean aerodynamic chord. Also, included in this investigation are drag measurements made on relatively simple fixed-control models tested with both conventional and V-tail arrangements.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L50G18a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-11
    Description: An experimental investigation of the variation of aileron rolling effectiveness and total drag with Mach number has been made using 1/6-scale rocket-propelled models of the Bell MX-776. Three models having constant-chordwise-thickness full-span aileron at approximate deflections of 2 deg, 5 deg, and 15 deg have been flown. Positive control effectiveness over the Mach number range between approximately 0.5 and 1.2 was obtained from the models and no indication of reversal of effectiveness was encountered. The ratio of tip helix angle to aileron deflection indicated a decrease in proportional rolling effectiveness with increasing deflections in the Mach number range from approximately 0.7 to 1.0. A drag rise of about 125 percent in the transonic region between Mach numbers of 0.85 and 1.02 followed by a gradual decrease at higher speeds was revealed.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL51D27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-11
    Description: An investigation of a 1/24-scale dynamically similar model of the Boeing B-47 airplane was made to determine the ditching characteristics and proper ditching technique for the airplane. Various conditions of damage, landing attitude, flap setting, and speed were investigated. The behavior of the model was determined from visual observations, motion-picture records, and time-history deceleration records. The results of the investigation are presented in table form, photographs, and curves. The airplane should be ditched at the lowest speed and highest attitude consistent with adequate control; the flaps should be full down. The airplane will probably make a deep but fairly smooth run. The fuselage bottom will be damaged and partially filled with water; consequently, crew members should be assigned ditching stations near an exit in the upper or forward part of the fuselage. The nacelles may be expected to be torn away from the wing. In calm water the maximum decelerations will be about 3g and the landing run will be about 6 fuselage lengths.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50E03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-11
    Description: At the request of the Air Materiel Command, an investigation was made in the Langley free-flight tunnel to determine the longitudinal stability and control characteristics of models coupled together in a tandem configuration for aerial refueling similar to one proposed by the Douglas Aircraft Company, Inc. Static force tests were made with 1/20-scale models of the B-29 and F-80 airplanes to determine the effects of rigidly coupling the airplanes together. The Douglas configuration differs from the rigid configuration tested in that it provides for some freedom in pitch and vertical displacement. The force tests showed that, for the bomber alone, the aerodynamic center was 0.21 mean aerodynamic chord behind the center of gravity (stable) but that for the tandem configuration with rigid coupling the aerodynamic center was 0.28 mean aerodynamic chord forward of the center of gravity of the combination (unstable). This reduction in stability was caused by the downwash of the bomber on the fighter. The pitching moment produced by elevator deflection of the bomber was reduced approximately 50 percent by addition of the fighter. Some recent flight tests made in the free-flight tunnel on models in a similar tandem configuration indicated that, with a hinged coupling permitting freedom in pitch, the stability of the combination was better than that obtained with a rigid coupling and was about the same as that for the bomber alone.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50E01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-11
    Description: At the request of the Air Materiel Command an investigation was made in the Langley free-flight tunnel to determine the static longitudinal stability and control characteristics of models coupled together in a tandem configuration proposed by All American Airways, Inc. Force tests were made using 1/20-scale models of B-29 end F-80 airplanes to determine the effects of coupling the fighter to the tail of the bomber. The results of the investigation showed that for the bomber alone the aerodynamic center was 0.21 mean aerodynamic chord behind the center of gravity (stable) but that for the tandem configuration the aerodynamic center was 0.09 mean aerodynamic chord forward of the center of gravity, of the combination (unstable). The elevator effectiveness of the bomber was reduced approximately 50 percent by addition of the fighter. Some recent flight tests made in the free-flight tunnel with models simulating the proposed configuration indicate that the reduction in stability may be minimized by incorporating a hinged coupling permitting freedom in pitch.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50C14A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-11
    Description: An investigation was made by the NACA wing-flow method to determine the drag, pitching-moment, lift, and angle-of-attack characteristics at transonic speeds of various configurations of a semispan model of an early configuration of the XF7U-1 tailless airplane. The results of the tests indicated that for the basic configuration with undeflected ailavator, the zero-lift drag rise occurred at a Mach number of about 0.85 and that about a five-fold increase in drag occurred through the transonic speed range. The results of the tests also indicated that the drag increment produced by -8.0 degrees deflection of the ailavator increased with increase in normal-force coefficient and was smaller at speeds above than at speeds below the drag rise. The drag increment produced by 35 degree deflection of the speed brakes varied from 0.040 to 0.074 depending on the normal-force coefficient and Mach number. These values correspond to drag coefficients of about 0.40 and 0.75 based on speed-brake frontal area. Removal of the fin produced a small positive drag increment at a given normal-force coefficient at speeds during the drag rise. A large forward shift of the neutral-point location occurred at Mach numbers above about 0.90 upon removal of the fin, and also a considerable forward shift throughout the Mach number range occurred upon deflection of the speed brakes. Ailavator ineffectiveness or reversal at low deflections, similar to that determined in previous tests of the basic configuration of the model in the Mach number range from about 0.93 to 1.0, was found for the fin-off configuration and for the model equipped with skewed (more highly sweptback) hinge-line ailavators. With the speed brakes deflected, little or no loss in the incremental pitching moment produced by deflection of the ailavator from O degrees to -8.00 degrees occurred in the Mach number range from 0.85 to 1.0 in contrast to a considerable loss found in previous tests with the speed brakes off.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50D18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the spin and recovery characteristics of a 0.057-scale model of the modified Chance Vought XF7U-1 airplane. The primary change in the design from that previously tested was a revision of the twin vertical tails. Tests were also made to determine the effect of installation of external wing tanks. The results indicated that the revision in the vertical tails did not greatly alter the spin and recovery characteristics of the model and recovery by normal use of controls (fill rapid rudder reversal followed approximately one-half turn later by movement of the stick forward of neutral) was satisfactory. Adding the external wing tanks to cause the recovery characteristics to become critical and border on an unsatisfactory condition; however, it was shown that satisfactory recovery could be obtained by jettisoning the tanks, followed by normal recovery technique.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50F02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-11
    Description: A flight test was made to determine the servoplane effectiveness and stability characteristics of the free-floating horizontal stabilizer to be used on the XF10F airplane. The results of this test indicate that servoplane effectiveness is practically constant through the speed range up to a Mach number of 1.15, and the stabilizer static stability is satisfactory. A loss of damping occurs over a narrow Mach number range near M = 1.0, resulting in dynamic instability of the stabilizer in this narrow range. Above M = 1.0 there is a gradual positive trim change of the stabilizer.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL51E04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-11
    Description: An investigation of the static and dynamic longitudinal stability characteristics of 1/3.7 scale rocket-powered model of the Bell MX-776A has been made for a Mach number range from 0.8 to 1.6. Two models were tested with all control surfaces at 0 degree deflection and centers of gravity located 1/4 and 1/2 body diameters, respectively, ahead of the equivalent design location. Both models were stable about the trim conditions but did not trim at 0 degree angle of attack because of slight constructional asymmetries. The results indicated that the variation of lift and pitching moment was not linear with angle of attack. Both lift-curve slope and pitching-moment-curve slope were of the smallest magnitude near 0 degree angle of attack. In general, an increase in angle of attack was accompanied by a rearward movement of the aerodynamic center as the rear wing moved out of the downwash from the forward surfaces. This characteristic was more pronounced in the transonic region. The dynamic stability in the form of total damping factor varied with normal-force coefficient but was greatest for both models at a Mach number of approximately 1.25. The damping factor was greater at the lower trim normal-force coefficients except at a Mach number of 1.0. At that speed the damping factor was of about the same magnitude for both models. The drag coefficient increased with trim normal-force coefficient and was largest in the transonic region.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SL50B23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-11
    Description: Investigations have been conducted to determine by means of total-pressure surveys the boundaries of single and twin jets discharging through convergent nozzles into quiescent air. The jet boundaries for the region from the nozzle outlets to a station 6 nozzle diameters downstream are presented for nozzle pressure ratios ranging from 2.5 t o 16.0 and for twin-Jet nozzle center-line spacings ranging from 1.42 to 2.50 nozzle diameters. The effects of these parameters on the interaction of twin Jets are discussed. In order to ascertain the utility of the results for other than the test conditions, the effects of jet temperature, Reynolds number, and humidity on the pressure boundaries have been briefly investigated. The result indicate that for a jet of 2.6 the pressure boundaries are slightly smaller than those of corresponding unheated jets and that the effects of Reynolds number and humidity are negligible.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-E50E03a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-11
    Description: Calculations have been made to find range? attainable by bombers of gross weights from l40,000 to 300,000 pounds powered by turbine-propeller power plants. Only conventional configurations were considered and emphasis was placed upon using data for structural and aerodynamic characteristics which are typical of modern military airplanes. An effort was made to limit the various parameters invoked in the airplane configuration to practical values. Therefore, extremely high wing loadings, large amounts of sweepback, and very high aspect ratios have not been considered. Power-plant performance was based upon the performance of a typical turbine-propeller engine equipped with propellers designed to maintain high efficiencies at high-subsonic speeds. Results indicated, in general, that the greatest range, for a given gross weight, is obtained by airplanes of high wing loading, unless the higher cruising speeds associated with the high-wing-loading airplanes require-the use of thinner wing sections. Further results showed the effect of cruising at-high speeds, of operation at very high altitudes, and of carrying large bomb loads.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-L50F12 , Rept-3185
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: An investigation was conducted with a single combustor from a J47 turbojet engine using weathered aviation gasoline and several spark-plug modifications to determine altitude ignition, acceleration, and steady state operating characteristics. Satisfactory ignition was obtained with two modifications of the original opposite-polarity spark plug up to and including an altitude of 40,003 feet at conditions simulating equilibrium windmilling of the engine at a flight speed of 400 miles per hour. At a simulated altitude of 30,000 feet, satisfactory ignition was obtained over a range of simulated engine speeds. No significant effect of fuel temperature on ignition limits was observed over a range of fuel temperatures from 80 deg to -52 deg F. At an altitude of 30,000 feet, the excess temperature rise available for acceleration at low engine speeds was limited by the ability of the combustor to produce temperature rise, whereas at high engine speeds the maximum allowable turbine-inlet temperature became the restricting factor. Altitude operational limits increased from about 51,500 feet at 55 percent of rated engine speed to about 64,500 feet at 85 percent of rated speed. Combustion efficiencies varied from 59.0 to 92.6 percent over the range investigated and decreased with a decrease in engine speed and with an increase in altitude; higher efficiencies would have been obtained if lower altitudes had been investigated. Comparisons were made of the combustion efficiencies of weathered aviation gasoline and MIL-F-5616 fuel at altitudes of 30,000 and 40,000 feet. Combustion efficiencies obtained with MIL-F-5616 fuel were 8 percent higher at rated engine speed and 14 percent lower at 55 percent of rated speed than those obtained with weathered aviation gasoline.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-RM-SE50J12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: An investigate ion was made of the disturbed motion of a gas for the harmonic vibrations of a thin slightly cambered wing of finite span moving forward with supersonic velocity. This problem was considered by E. A. Krasilshchikova who applied the method of Fourier series and obtained a solution of the space problem for the condition that the Mach cones drawn through the leading edge of the wing intersect the wing or are tangent to it. In this paper, a different method of solution is given, which is free from the previously mentioned condition. In particular, the vibrations of a triangular wing lying within the Mach cone are considered.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TM-1257 , Prikladnaya Matematika i Mekhanika; 11; 371-376
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...