ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aeronautics (General)  (5)
  • 2020-2020
  • 2015-2019
  • 1945-1949  (5)
  • 1949  (5)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: The Index of NACA Technical Publications covers reports issued from the date of origin of the Committee in 1915 until approximately September 1949. Because omissions were noted after publication of the Index issued in 1947, and since many new reports have been released since that time, it was decided to issue a new volume to supersede completely the 1947 Index, with supplements to be issued regularly in the future. Commencing with all publications issued after September 1, 1949, subject classifications were revised, the most important change involving the transfer of aircraft loads reports from the Aerodynamics classification to Structures. For those maintaining a file of NACA index cards, it is recommended that cards issued for reports dated prior to September 1, 1949 be removed from the file. This volume includes the same index information. Supplements covering periods following September 1, 1949, will be arranged according to the revised subject classifications. On the pages immediately following, the subject classifications are indexed in order of breakdown. There is included in the back of this volume an alphabetical arrangement of the subject classifications.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-14
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: NACA-RM-L9G06a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-11
    Description: A single-stage modification of the turbine from a Mark 25 torpedo power plant was investigated to determine the performance with two nozzles and three rotor-blade designs. The performance was evaluated in terms of brake, rotor, and blade efficiencies at pressure ratios of 8, 15 (design), and 20. The blade efficiencies with the two nozzles are compared with those obtained with four other nozzles previously investigated with the same three rotor-blade designs. Blade efficiency with the cast nozzle of rectangular cross section (J) was higher than that with the circular reamed nozzle (K) at all speeds and pressure ratios with a rotor having a 0.45-inch 17 degree-inlet-angle blades. The efficiencies for both these nozzles were generally low compared with those of the four other nozzles previously investigated in combination with this rotor. At pressure ratios of 15 and 20, the blade efficiencies with nozzle K and the two rotors with 0.40-inch blades having different inlet angles were higher than with the four other nozzles, but the efficiency with nozzle J was generally low. Increasing the blade inlet angle from 17 degrees to 20 degrees had little effect on turbine performance, whereas changing the blade length from 0.40 to 0.45 inch had a marked effect. Although a slight correlation of efficiency with nozzle size was noted for the rotor with 0.45-inch 17 degree-inlet-angle blades, no such effect was discernible ,for the two rotors with 0.40-inch blades.Losses in the supersonic air stream resulting from the complex flow path in the small air passages are probably a large percentage of the total losses, and apparently the effects of changing nozzle size and shape within the limits investigated are of secondary importance.
    Keywords: Aeronautics (General)
    Type: NACA-RM-SE9J25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: A Mark 25 torpedo power plant modified to operate as a single-stage turbine was investigated to determine the performance with two nozzle designs and a standard first-stage rotor having 0.40-inch blades with a 17O met-air angle. Both nozzles had smaller port cross-sectional areas than those nozzles of similar design, which were previously investigated. The performance of the two nozzles was compared on the basis of blade, rotor, and brake efficiencies as a function of blade-jet speed ratio for pressure ratios of 8, 15 (design), and 20. At pressure ratios of 15 and 20, the blade efficiency obtained with the nozzle having circular passages (K) was higher than that obtained with the nozzle having rectangular passages (J). At a pressure ratio of 8, the efficiencies obtained with the two nozzles were comparable for blade-jet speed ratios of less than 0.260. For blade-jet speed ratios exceeding this value, nozzle K yielded slightly higher efficiencies. The maximum blade efficiency of 0.569 was obtained with nozzle K at a pressure ratio of 8 and a blade-jet speed ratio of 0.295. At design speed and pressure ratio, nozzle K yielded a maximum blade efficiency of 0.534, an increase of 0.031 over that obtained with nozzle J. When the blade efficiencies of the two nozzles were compared with those of four other nozzles previously investigated, the maximum difference for the six nozzles with this rotor was 0.050. From, this comparison, no specific effect of nozzles size or shape on over-all performance was discernible.
    Keywords: Aeronautics (General)
    Type: NACA-RM-SE9H30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Bureau of Aeronautics Design Specifications SS-IC-2 for water loads in sheltered water are compared with experimental water loads obtained during a full--scale landing investigation. This investigation was conducted with a JRS-1 flying boat which has a 20 degrees dead-rise V-bottom with a partial chine flare. The range of landing conditions included airspeeds between 88 and 126 feet per second, sinking speeds between 1.6 and 9.1 feet per second, flight angles less than 6 degrees, and trims between 2 degrees and 12 degrees. Landings were moderate and were made in calm water. Measurements were obtained of maximum over-all loads, maximum pitching moments, and pressure distributions. Maximum experimental loads include over-all load factors of 2g, moments of 128,000 pound-feet, and maximum local pressures greater than 40 pounds per square inch. Experimental over-all loads are approximately one-half the design values, while local pressures are of the same order as or larger than pressures calculated from specifications for plating, stringer, floor, and frame design. The value of this comparison is limited, to some extent, by the moderate conditions of the test and by the necessary simplifying assumptions used in comparing the specifications with the experimental loads.
    Keywords: Aeronautics (General)
    Type: NACA-RM-SL9G01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...