ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 248; Acapulco Trench, Pacific ocean; ALB-13; ALB-173; ALB-2; ALB-31; Albatross (1882-1921); Albatross1899-1900; Albatross1904-1905; Albatross IV (1963); ALBTR-13; ALBTR-173; ALBTR-2; ALBTR-31; ALBTR-4622; ALBTR-4656; ALBTR-4658; ALBTR-4660; ALBTR-4662; ALBTR-4676; ALBTR-4681; ALBTR-4685; ALBTR-4701; ALBTR-4711; ALBTR-4721; Aluminium; Argo; B1 VS-78; Barium; Calcium; Calculated from weight loss after ignition at 450 °C; CAP-50BG-1; CAPB01BD-050BG-01; CAPRICORN-B; CARN_Revelle_46; CARN_Revelle_78; CARN7-150; CARN7-86; CARN-Cruise7; Carnegie; CASC-5D; CASCADIA; CHA-248; CHA-252; CHA-276; CHA-285; CHA-289; CHA-299; CHA-302; Challenger1872; CHUB01BD; CHUB01BD-001G; CHUB01BD-002G; CHUB01BD-003G; CHUB01BD-009G; CHUB01BD-017G; CHUB01BD-019G; CHUB01BD-039G; CHUB-1; CHUB-11G; CHUB-17; CHUB-19; CHUB-2; CHUB-3; CHUB-39; CHUB5; CHUB-7G; CHUB-9; CHUBASCO; Cobalt; Copper; Core; CORE; core_48; CRU9121; CUSP1954; CUSP8P; DEPTH, sediment/rock; Description; DNWB0ABD; DNWB0ABD-017G; DNWB0ABD-019G; DNWB0BBD; DNWB0BBD-037G; DNWB0BBD-040G; DNWB0BBD-043G; DNWB0BBD-048G; DNWB0BBD-054G; DNWB0DBD; DNWB0DBD-147GB; DNWH0AHO-004H; DOWNWIND-B1; DOWNWIND-B2; DOWNWIND-B4; DOWNWIND-H; Dredge; Dredge, rock; DRG; DRG_R; DWBD1; DWBD2; DWBD4; DWBD7; DWBG147B; DWBG17; DWBG19; DWBG37; DWBG40; DWBG43; DWBG48; DWBG54; DWBG78; DWHD15; DWHD16; DWHD47; DWHD55; DWHD72; DWHH4; Epce; Event label; GC; Grab; GRAB; Gravity corer; H.M.S. Challenger (1872); Henderson Seamount, Pacific Ocean; Horizon; Identification; Iron; Lead; Loss on ignition; Manganese; MDPC01HO-005-02; MDPC02HO-032; MDPC02HO-MP-025F-2; MDPC02HO-MP-026A-3; MDPC02HO-MP-033K; MDPC02HO-MP-037A; MDPC03HO-MP-043D; MIDPAC; Molybdenum; Monegasque Trawl; MONS01AR-MONS08AR; MONS08AR-139D; MONSOON; MPC-25F-2; MPC-26A-3; MPC-32; MPC-33K; MPC-37A; MPC-43D; MPC-5-2; MSN-07G; MSN-10G; MSN-11G; MSN-139D; MSN-17G; MSN-18G; MSN G; MSNK; MSN Q; MSN S; MTRW; NEL-HEND; Nickel; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; NODC-0418; North-East Pacific Ocean; Northern_Holiday; North Pacific Ocean; Northwest Pacific Ocean; North-West Pacific Ocean; NTHL02HO-010PH; NTHL-10; Pacific Ocean; Page(s); PAS-19121; Phosphorus; Potassium; Sample code/label; SDSE_073; Sediment type; Silicon; Size; SOB; SOB-005D; SOB-010D; SOB-013D; SOB-020D; SOB-022D; SOB-025D; SOB-027D; SOBO03BD-005D; SOBO03BD-010D; SOBO03BD-013D; SOBO04BD-020D; SOBO04BD-022D; SOBO04BD-025D; SOBO04BD-027D; Southern Borderland; Specific gravity; Spencer F. Baird; Strontium; SwedishDeepSeaExpedition; Titanium; TRANS_14C; TRANS_14D; TRAWL; Trawl net; UNK_BH2; UNK_MS; VERMILION_SEA; Vermilion Sea, Pacific Ocean; Vityaz (ex-Mars); Vityaz-29; VITYAZ4191-TR; VITYAZ4199-TR; VITYAZ4217-TR; VITYAZ4221-TR; VS BII-35; VSS35D; VSS78D; Water in rock; WIG-6; WIGWAM; Wired profile sonde; WP; X-ray fluorescence (XRF); Zinc  (1)
  • ALB-13; ALB-2; Albatross (1882-1921); Albatross1899-1900; Albatross1904-1905; ALBTR-13; ALBTR-2; ALBTR-4711; ALBTR-4721; Chromium; Cobalt; DEPTH, sediment/rock; DNWB0ABD; DOWNWIND-B1; DOWNWIND-H; Dredge; DRG; DWBD4; DWHD72; Event label; Horizon; Identification; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Optical spectrographic analysis; Pacific Ocean; Spencer F. Baird  (1)
  • PANGAEA  (2)
  • Springer
  • MDPI Publishing
  • 1960-1964  (2)
Collection
Keywords
Publisher
  • PANGAEA  (2)
  • Springer
  • MDPI Publishing
Years
  • 1960-1964  (2)
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Arrhenius, Gustaf; Bonatti, Enrico (1963): Neptunism and vulcanism in the ocean. Progress in Oceanography, 3, 7-22, https://doi.org/10.1016/0079-6611(65)90005-4
    Publication Date: 2023-08-28
    Description: The origin of authigenic minerals on the ocean floor has been extensively discussed in the past with emphasis on two major processes; precipitation from solutions originating from submarine eruptions, and slow precipitation from sea water of dissolved elements, originating from weathering of continental rocks. It is concluded that in several marine authigenic mineral systems these processes overlap. A diagnostic principle is suggested, permitting a qualitative or semiquantitative discrimination between marine authigenic minerals crystallized from dissolved species, which have spent a long time in solution on the one hand, and the same minerals generated from solutions, near their source on the other. Extensive data are available for the manganese and iron oxide minerals forming manganese nodules. It is indicated on the basis of their composition and structure that many of the nodules found in the vicinity of the continents are made up essentially of manganese derived from continental weathering. In contrast to this group, all of the nodules found in the Pacific area of submarine vulcanism display the criteria for rapid precipitation near the source of solution. The distribution of barium minerals over the deep ocean floor is discussed.The same diagnostic principle is suggested for application to these solids, in order to discriminate between baryte and harmotome crystallized near the source of barium- rich, acidic vulcanites, and the same minerals formed from continental solution with passage through the biosphere. In the case of the authigenic aluminosilicates it is found that many of the framework elements (Si and particularly Al) have low passage time through solution, and the major fraction of these elements is consequently removed from solution in the vicinity of the eruptive source materials. Extensive modification of the crystal structures, however, takes place over long periods of time, adding particularly cations from sea water, and probably to some extent silica from siliceous fossils, which on their decay on the ocean floor appear to contribute to the silicate framework of growing zeolites. The marked fractionation of the rare earth ions between coexisting phases is pointed out, with discussion of the potential use of this phenomenon to indicate the processes of formation. The use of the hafnium/zirconium ratio as a tracer for the igneous source type is suggested, and the application of ideally imperfect tracers to establish the varying relative importance of volcanic versus halmeic source of marine minerals is discussed in general.
    Keywords: ALB-13; ALB-2; Albatross (1882-1921); Albatross1899-1900; Albatross1904-1905; ALBTR-13; ALBTR-2; ALBTR-4711; ALBTR-4721; Chromium; Cobalt; DEPTH, sediment/rock; DNWB0ABD; DOWNWIND-B1; DOWNWIND-H; Dredge; DRG; DWBD4; DWHD72; Event label; Horizon; Identification; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; Optical spectrographic analysis; Pacific Ocean; Spencer F. Baird
    Type: Dataset
    Format: text/tab-separated-values, 42 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mero, John L (1961): Sea floor manganese nodules. Unpublished report to the Daniel C. Jackling Award Fellowship Committee; American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), https://www.ngdc.noaa.gov/mgg/geology/data/1599/15995009/15995009.pdf
    Publication Date: 2023-08-28
    Description: A compilation of chemical analyses of Pacific Ocean nodules using an x-ray fluorescence technique. The equipment used was a General Electric XRD-5 with a tungsten tube. Lithium fluoride was used as the diffraction element in assaying for all elements above calcium in the atomic table and EDDT was used in conjunction with a helium path for all elements with an atomic number less than calcium. Flow counters were used in conjunction with a pulse height analyzer to eliminate x-ray lines of different but integral orders in gathering count data. The stability of the equipment was found to be excellent by the author. The equipment was calibrated by the use of standard ores made from pure oxide forms of the elements in the nodules and carefully mixed in proportion to the amounts of these elements generally found in the manganese nodules. Chemically analyzed standards of the nodules themselves were also used. As a final check, a known amount of the element in question was added to selected samples of the nodules and careful counts were taken on these samples before and after the addition of the extra amount of the element. The method involved the determination and subsequent use of absorption and activation factors for the lines of the various elements. All the absorption and activation factors were carefully determined using the standard ores. The chemically analyzed samples of the nodules by these methods yielded an accuracy to at least three significant figures.
    Keywords: 248; Acapulco Trench, Pacific ocean; ALB-13; ALB-173; ALB-2; ALB-31; Albatross (1882-1921); Albatross1899-1900; Albatross1904-1905; Albatross IV (1963); ALBTR-13; ALBTR-173; ALBTR-2; ALBTR-31; ALBTR-4622; ALBTR-4656; ALBTR-4658; ALBTR-4660; ALBTR-4662; ALBTR-4676; ALBTR-4681; ALBTR-4685; ALBTR-4701; ALBTR-4711; ALBTR-4721; Aluminium; Argo; B1 VS-78; Barium; Calcium; Calculated from weight loss after ignition at 450 °C; CAP-50BG-1; CAPB01BD-050BG-01; CAPRICORN-B; CARN_Revelle_46; CARN_Revelle_78; CARN7-150; CARN7-86; CARN-Cruise7; Carnegie; CASC-5D; CASCADIA; CHA-248; CHA-252; CHA-276; CHA-285; CHA-289; CHA-299; CHA-302; Challenger1872; CHUB01BD; CHUB01BD-001G; CHUB01BD-002G; CHUB01BD-003G; CHUB01BD-009G; CHUB01BD-017G; CHUB01BD-019G; CHUB01BD-039G; CHUB-1; CHUB-11G; CHUB-17; CHUB-19; CHUB-2; CHUB-3; CHUB-39; CHUB5; CHUB-7G; CHUB-9; CHUBASCO; Cobalt; Copper; Core; CORE; core_48; CRU9121; CUSP1954; CUSP8P; DEPTH, sediment/rock; Description; DNWB0ABD; DNWB0ABD-017G; DNWB0ABD-019G; DNWB0BBD; DNWB0BBD-037G; DNWB0BBD-040G; DNWB0BBD-043G; DNWB0BBD-048G; DNWB0BBD-054G; DNWB0DBD; DNWB0DBD-147GB; DNWH0AHO-004H; DOWNWIND-B1; DOWNWIND-B2; DOWNWIND-B4; DOWNWIND-H; Dredge; Dredge, rock; DRG; DRG_R; DWBD1; DWBD2; DWBD4; DWBD7; DWBG147B; DWBG17; DWBG19; DWBG37; DWBG40; DWBG43; DWBG48; DWBG54; DWBG78; DWHD15; DWHD16; DWHD47; DWHD55; DWHD72; DWHH4; Epce; Event label; GC; Grab; GRAB; Gravity corer; H.M.S. Challenger (1872); Henderson Seamount, Pacific Ocean; Horizon; Identification; Iron; Lead; Loss on ignition; Manganese; MDPC01HO-005-02; MDPC02HO-032; MDPC02HO-MP-025F-2; MDPC02HO-MP-026A-3; MDPC02HO-MP-033K; MDPC02HO-MP-037A; MDPC03HO-MP-043D; MIDPAC; Molybdenum; Monegasque Trawl; MONS01AR-MONS08AR; MONS08AR-139D; MONSOON; MPC-25F-2; MPC-26A-3; MPC-32; MPC-33K; MPC-37A; MPC-43D; MPC-5-2; MSN-07G; MSN-10G; MSN-11G; MSN-139D; MSN-17G; MSN-18G; MSN G; MSNK; MSN Q; MSN S; MTRW; NEL-HEND; Nickel; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; NODC-0418; North-East Pacific Ocean; Northern_Holiday; North Pacific Ocean; Northwest Pacific Ocean; North-West Pacific Ocean; NTHL02HO-010PH; NTHL-10; Pacific Ocean; Page(s); PAS-19121; Phosphorus; Potassium; Sample code/label; SDSE_073; Sediment type; Silicon; Size; SOB; SOB-005D; SOB-010D; SOB-013D; SOB-020D; SOB-022D; SOB-025D; SOB-027D; SOBO03BD-005D; SOBO03BD-010D; SOBO03BD-013D; SOBO04BD-020D; SOBO04BD-022D; SOBO04BD-025D; SOBO04BD-027D; Southern Borderland; Specific gravity; Spencer F. Baird; Strontium; SwedishDeepSeaExpedition; Titanium; TRANS_14C; TRANS_14D; TRAWL; Trawl net; UNK_BH2; UNK_MS; VERMILION_SEA; Vermilion Sea, Pacific Ocean; Vityaz (ex-Mars); Vityaz-29; VITYAZ4191-TR; VITYAZ4199-TR; VITYAZ4217-TR; VITYAZ4221-TR; VS BII-35; VSS35D; VSS78D; Water in rock; WIG-6; WIGWAM; Wired profile sonde; WP; X-ray fluorescence (XRF); Zinc
    Type: Dataset
    Format: text/tab-separated-values, 2243 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...