ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-26
    Description: In this study we combine seismological and GOCE satellite gravity information by using a Bayesian-like technique, with the aim of inferring the density structure of the Pacific (90°N 90°S) (121°E 60°W) lithosphere and upper mantle. We recover a 1° × 1° 3-D density model, down to 300 km depth, which explains gravity observations with a variance reduction of 67.41%. The model, with an associated a posteriori standard deviation, provides a significant contribution to understanding the evolution of the Pacific lithosphere and answers to some debated geodynamic questions. Our methodology enables us to combine the recovery of density parameters with the optimum density-vSV scalings. The latter account for both seismological and gravity observations in order to identify the regions characterized by chemically-induced density heterogeneities which add to the thermally-induced anoma- lies. Chemically-modified structures are found west of the East Pacific Rise (EPR) and are of relevant amplitude both below the north-western side of the Pacific Plate, at the base of the lithosphere, and up to 100 km depth beneath the Hawaiian and Super Swell regions, thus explaining the anomalous shallow regions without invoking the thermal buoyancy as the sole justification. Coherently with the chemically modified structures, our results a) support a lighter and more buoyant lithosphere than that predicted by the cooling models and b) are in favor of the hypothesized crustal underplating beneath the Hawaiian chain and be- neath the volcanic units in the southern branch of the Super Swell region. The comparison between calculated mantle gravity residuals and residual topography a) suggests a lateral viscosity growth associated with the increasing thickness and density of the Plate and b) correlates well with sub-lithospheric mantle flow from the EPR towards west, up to the Kermadec and Tonga Trench in the south and the Kuril-Kamchatka Trench in the north.
    Description: Published
    Description: 101-115
    Description: 7T. Struttura della Terra e geodinamica
    Description: JCR Journal
    Keywords: Pacific lithosphere ; GOCE ; Satellite gravity ; Seismological observations ; Residual Topography ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-15
    Description: An Mw 6.1, devastating earthquake, on April 6, 2009, struck the Middle Aterno Valley (Abruzzi Apennines, Italy) due to the activation of a poorly known normal fault system. Structural analysis of the fault population and investigation of the relationships with the Quaternary continental deposits through integrated field and laboratory techniques were conducted in order to reconstruct the long-term, tectono-sedimentary evolution of the basin and hypothesize the size of the fault segment. A polyphasic evolution of the Middle Aterno Valley is characterized by a conjugate, ∼E-W and ∼NS-striking fault system, during the early stage of basin development, and by a dip-slip, NW-striking fault system in a later phase. The old conjugate fault system controlled the generation of the largest sedimentary traps in the area and is responsible for the horst and graben structures within the basin. During the Early Pleistocene the E-W and NS system reactivated with dip-slip kinematics. This gave rise to intra-basin bedrock highs and a significant syn-tectonic deposition, causing variable thickness and hiatuses of the continental infill. Subsequently, since the end of the Early Pleistocene, with the inception of the NW-striking fault system, several NW-strands linked into longer splays and their activity migrated toward a leading segment affecting the Paganica-San Demetrio basin: the Paganica-San Demetrio fault alignment. The findings from this work constrain and are consistent with the subsurface basin geometry inferred from previous geophysical investigations. Notably, two major elements of the ∼E-W and ∼NS-striking faults likely act as transfer to the nearby stepping active fault systems or form the boundaries, as geometric complexities, that limit the Paganica-San Demetrio fault segment overall length to 19 ± 3 km. The resulting size of the leading fault segment is coherent with the extent of the 6 April 2009 L'Aquila earthquake causative fault. The positive match between the geologic long-term and coseismic images of the 2009 seismogenic fault highlights that the comprehensive reconstruction of the deformation history offers a unique contribution to the understanding faults seismic potential.
    Description: MIUR (Italian Ministry of Education, University and Research) project “FIRB Abruzzo - High-resolution analyses for assessing the seismic hazard and risk of the areas affected by the 6 April 2009 earthquake”, ref. RBAP10ZC8K_005 and RBAP10ZC8K_007, and by Agreement INGV-DPC 2012–2021
    Description: Published
    Description: 30-66
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Quaternary geology ; L'Aquila earthquake ; structural geology ; Middle Aterno Valley ; neotectonics ; active fault ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-12
    Description: The Great Burma earthquake (MsGR 8.0; Ms 7.6–7.7) occurred on May 23rd, 1912, and was one of the most remarkable early 1900's seismic events in Asia as described by Gutenberg and Richter (1954). The earthquake, focused near Maymyo, struck the Northern Shan State in eastern Myanmar. Contemporary evaluation of damage distribution and oral accounts led to a correlation between the earthquake and the topographically prominent Kyaukkyan Fault near the western margin of the Shan Plateau, although direct evidence has never been reported. This study aims to find evidence of paleoseismic activity, and to better understand the relationship between the 1912 earthquake and the Kyaukkyan Fault. Paleoseismic trenching along the Kyaukkyan Fault revealed evidence of several surface rupturing events. The northernmost trench exposes at least two visible rupture events since 4660 ± 30 BP: an older rupture stratigraphically constrained by AMS 14C dating to between 4660 ± 30 BP and 1270 ± 30 BP, and a younger rupture formed after 1270 ± 30 BP. The presence of pottery, bricks and cookingrelated charcoal in the younger faulted stratigraphy demonstrates Kyaukkyan Fault activity within human times, and a possible correlation between the younger rupture and the 1912 Maymyo earthquake is not excluded. The southern paleoseismic trench, within a broad transtensional basin far from bounding faults, exposes two (undated) surface ruptures. Further study is required to correlate those ruptures to the events dated in the north. These preliminary paleoseismological results constitute the first quantitative evidence of paleoseismic activity along the northern ~160 km of the Kyaukkyan Fault, and support existing evidence that the Kyaukkyan Fault is an active but slow-slipping structure with a long interseismic period.
    Description: Published
    Description: 75-86
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Paleoseismology ; active tectonics ; Myanmar ; 1912 earthquake ; strike-slip faulting ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...