ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.04. Geology  (3)
  • Antarctic bacterioplankton
  • Wiley  (3)
  • Nature Publishing Group
  • American Institute of Physics (AIP)
Collection
  • 1
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-08
    Description: The response of continental forelands to subduction and collision is a widely investigated topic in geodynamics. The deformation occurring within a foreland shared by two opposite‐verging chains, however, is uncommon and poorly understood. The Apulia Swell in the southern end of the Adria microplate (Africa‐Europe plate boundary, central Mediterranean Sea) represents one of these cases, as it is the common foreland of the SW verging Albanides‐Hellenides and the NE verging Southern Apennines merging into the SSE verging Calabrian Arc. We investigated the internal deformation of the Apulia Swell using multiscale geophysical data: multichannel seismic profiles recording up to 12‐s two‐way time (TWT) for a consistent image of the upper crust; high‐resolution multichannel seismic profiles, high‐resolution multibeam bathymetry, and CHIRP profiles acquired by R/V OGS Explora to constrain the Quaternary geological record. The results of our analyses characterize the geometry of the South Apulia Fault System (SAFS), a 100‐km‐long and 12‐km‐wide structure attesting an extensional (and possibly transtensional) response of the foreland to the two contractional fronts. The SAFS consists of two NW‐SE right‐stepping master faults and several secondary structures. The SAFS activity spans from the Early Pleistocene through the Holocene, as testified by the bathymetric and high‐resolution seismic data, with long‐term slip rates in the range of 0.2–0.4 mm/yr. Considering the position within an area with few or none other active faults in the surroundings, the dimension, and the activity rates, the SAFS can be a candidate causative fault of the 20 February 1743, M 6.7, earthquake.
    Description: Italian Ministry for Education, University, and Research (MIUR), Premiale 2014 D. M. 291 03/05/2016.
    Description: Published
    Description: e2020TC006116
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: active tectonics ; apulia ; south apulia fault system ; 1743 earthquake ; marine geology ; stable continental region ; ionian sea ; active faults ; subsurface geology ; seismic interpretation ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-25
    Description: Tsunami deposits present an important archive for understanding tsunami histories and dynamics. Most research in this field has focused on onshore preserved remains, while the offshore deposits have received less attention. In 2009, during a coring campaign with theItalian Navy Magnaghi, four 1 m long gravity cores (MG cores) were sampled from the northern part of Augusta Bay, along a transect in 60 to 110 m water depth. These cores were taken in the same area where a core (MS06) was collected in 2007 about 2.3 km offshore Augusta at a water depth of 72 m below sea level. Core MS06 consisted of a 6.7 m long sequence that included 12 anomalous intervals interpreted as the primary effect of tsunami backwash waves in the last 4500 years. In this study, tsunami deposits were identified, based on sedimentology and displaced benthic foraminifera (as for core MS06) reinforced by X-ray fluorescence data. Two erosional surfaces (L1 and L2) were recognized coupled with grain size increase, abundant Posidonia oceanica seagrass remains and a significant amount of Nubecularia lucifuga, an epiphytic sessile benthic foraminifera considered to be transported from the inner shelf. The occurrence of Ti/Ca and Ti/Sr increments, coinciding with peaks in organic matter (Mo inc/coh) suggests terrestrial run-off coupled with an input of organic matter. The L1 and L2 horizons were attributed to two distinct historical tsunamis (AD 1542 and AD 1693) by indirect age-estimation methods using 210Pb profiles and the comparison of Volume Magnetic Susceptibility data between MG cores and MS06 cores. One most recent bioturbated horizon (Bh), despite not matching the above listed interpretative features, recorded an important palaeoenvironmental change that may correspond to the AD 1908 tsunami. These findings reinforce the value of offshore sediment records as an underutilized resource for the identification of past tsunamis.
    Description: Published
    Description: 1553-1576
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Eastern Sicily ; tsunami ; foraminifera ; sedimentology ; XRF core scanning ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The ISME Journal 6 (2012): 1901-1915, doi:10.1038/ismej.2012.31.
    Description: Antarctic surface oceans are well-studied during summer when irradiance levels are high, sea ice is melting and primary productivity is at a maximum. Coincident with this timing, the bacterioplankton respond with significant increases in secondary productivity. Little is known about bacterioplankton in winter when darkness and sea-ice cover inhibit photoautotrophic primary production. We report here an environmental genomic and small subunit ribosomal RNA (SSU rRNA) analysis of winter and summer Antarctic Peninsula coastal seawater bacterioplankton. Intense inter-seasonal differences were reflected through shifts in community composition and functional capacities encoded in winter and summer environmental genomes with significantly higher phylogenetic and functional diversity in winter. In general, inferred metabolisms of summer bacterioplankton were characterized by chemoheterotrophy, photoheterotrophy and aerobic anoxygenic photosynthesis while the winter community included the capacity for bacterial and archaeal chemolithoautotrophy. Chemolithoautotrophic pathways were dominant in winter and were similar to those recently reported in global ‘dark ocean’ mesopelagic waters. If chemolithoautotrophy is widespread in the Southern Ocean in winter, this process may be a previously unaccounted carbon sink and may help account for the unexplained anomalies in surface inorganic nitrogen content.
    Description: CSR was supported by an NSF Postdoctoral Fellowship in Biological Informatics (DBI-0532893). The research was supported by National Science Foundation awards: ANT 0632389 (to AEM and JJG), and ANT 0632278 and 0217282 (to HWD), all from the Antarctic Organisms and Ecosystems Program.
    Keywords: Antarctic bacterioplankton ; Metagenomics ; Chemolithoautotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...