ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (2)
  • Forest ecology
  • Nature Publishing Group
  • Blackwell Publishing Ltd
  • American Institute of Physics (AIP)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.
    Description: Published
    Description: 30471
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: eruptive potential ; eruptive probability ; open conduit volcanoes ; Etna ; Soil CO2 flux ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 21728, doi:10.1038/srep21728
    Description: Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
    Description: This research was supported by NSF Awards: OCE-1519578, OCE-1356708, BCS-1118340.
    Keywords: Climate-change impacts ; Forest ecology ; Ocean sciences ; Palaeoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Several volcanoes worldwide have shown changes in their stress state as a consequence of the deformation produced by the pressurization of a magmatic body. This study investigates seismic swarms occurring on the western flank of Mt. Etna in January 1997 - January 1998. Integrating seismic observations and geodetic data, we constrained the seismogenic fault system, and on the basis of stress tensor inversion and SHMAX analyses, we infer an inflating pressure source located at 5.5 km b.s.l. beneath the west portion of summit area. Evaluation of Coulomb failure stress (CFS) related to the proposed model, showed how a large part of the seismogenic fault underwent a significant CFS increase (500 kPa). We infer the presence of a sub-vertical faulted region, potentially weak, N50°E oriented beneath the western sector of Mt. Etna. This structure could be brought closer to failure thereby generating seismic swarms as the effect of elastic stress transfer induced by movement and/or overpressure of magmatic masses within the upper crust under the volcano.
    Description: This research was funded by the INGV–DPC 2007–2009 Agreement (Project V4_Flank).
    Description: Published
    Description: 339-348
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; modelling ; Seismicity ; GPS monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...