ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (20)
  • American Geophysical Union  (20)
  • Elsevier
  • 2015-2019  (20)
Collection
Years
Year
  • 1
    Publication Date: 2020-12-14
    Description: Explosive volcanic eruptions are defined as the violent ejection of gas and hot fragments from a vent in the Earth's crust. Knowledge of ejection velocity is crucial for understanding and modeling relevant physical processes of an eruption, and yet direct measurements are still a difficult task with largely variable results. Here we apply pioneering high-speed imaging to measure the ejection velocity of pyroclasts from Strombolian explosive eruptions with an unparalleled temporal resolution. Measured supersonic velocities, up to 405 m/s, are twice higher than previously reported for such eruptions. Individual Strombolian explosions include multiple, sub-second-lasting ejection pulses characterized by an exponential decay of velocity. When fitted with an empirical model from shock-tube experiments literature, this decay allows constraining the length of the pressurized gas pockets responsible for the ejection pulses. These results directly impact eruption modeling and related hazard assessment, as well as the interpretation of geophysical signals from monitoring networks.
    Description: INGV-DPC “V2” and “Paroxysm”, FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks”, and FP7-PEOPLE-IEF-2008 – 235328 Projects
    Description: Published
    Description: L02301
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: strombolian ; ejection velocity ; explosive eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-10
    Description: Continuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaiʻi, during 2011–2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000–1500 kg/m^3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011–2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea’s summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.
    Description: Published
    Description: 5477–5492
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Kīlauea Volcano; gravity changes; lava lake; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-01
    Description: A new period of eruptive activity started at Turrialba volcano, Costa Rica, in 2010 after almost 150 years of quiescence. This activity has been characterized by sporadic explosions whose frequency clearly increased since October 2014. This study aimed to identify the mechanisms that triggered the resumption of this eruptive activity and characterize the evolution of the phenomena over the past 2 years. We integrate 3He/4He data available on fumarole gases collected in the summit area of Turrialba between 1999 and 2011 with new measurements made on samples collected between September 2014 and February 2016. The results of a petrological investigation of the products that erupted between October 2014 and May 2015 are also presented. We infer that the resumption of eruptive activity in 2010 was triggered by a replenishment of the plumbing system of Turrialba by a new batch of magma. This is supported by the increase in 3He/4He values observed since 2005 at the crater fumaroles and by comparable high values in September 2014, just before the onset of the new eruptive phase. The presence of a number of fresh and juvenile glassy shards in the erupted products increased between October 2014 and May 2015, suggesting the involvement of new magma with a composition similar to that erupted in 1864–1866. We conclude that the increase in 3He/4He at the summit fumaroles since October 2015 represents strong evidence of a new phase of magma replenishment, which implies that the level of activity remains high at the volcano.
    Description: Published
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Turrialba volcano ; eruptive activity ; 3He/4He ; fumarole gases ; glassy shards ; juvenile component ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-15
    Description: We have analyzed a focal mechanism data set for Mount Vesuvius, consisting of 197 focal mechanisms of events recorded from 1999 to 2012. Using different approaches and a comparison between observations and numerical models, we have determined the spatial variations in the stress field beneath the volcano. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mount Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. This agrees also with the persistent character of the seismicity located within this volume. Conversely, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behavior and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system.
    Description: Published
    Description: 1181–1199
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: vesuvius ; stress inversion ; focal mechanisms ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-07
    Description: Integrating geodetic, seismic, and petrological data for a recent eruptive episode at Mount Etna has enabled us to define the history of magma storage and transfer within the multilevel structure of the volcano, providing spatial and temporal constraints for magma movements before the eruption. Geodetic data related to the July–August 2014 activity provide evidence of a magma reservoir at ~4 km below sea level. This reservoir pressurized from late March 2014 and fed magmas that were then erupted from vents on the lower eastern flank of North-East Crater (NEC) and at New South-East Crater (NSEC) summit crater during the July eruptive activity. Magma drainage caused its depressurization since mid-July. Textural and microanalytical data obtained from plagioclase crystals indicate similar disequilibrium textures and compositions at the cores in lavas erupted at the base of NEC and NSEC, suggesting comparable deep histories of evolution and ascent. Conversely, the compositional differences observed at the crystal rims have been associated to distinct degassing styles during storage in a shallow magma reservoir. Seismic data have constrained depth for a shallow part of the plumbing system at 1–2 km above sea level. Timescales of magma storage and transfer have also been calculated through diffusion modeling of zoning in olivine crystals of the two systems. Our data reveal a common deep history of magmas from the two systems, which is consistent with a recharging phase by more mafic magma between late March and early June 2014. Later, the magma continued its crystallization under distinct chemical and physical conditions at shallower levels.
    Description: The petrological part of this study was supported by the FIR 2014 research grant to Marco Viccaro from the University of Catania (Italy), grant number 2F119B, title of the project “Dynamics of evolution, ascent and emplacement of basic magmas: case-studies from eruptive manifestations of Eastern Sicily”.
    Description: Published
    Description: 5659–5678
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Petrology ; eruption ; GPS ; volcano seismology ; Etna ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: A new eruption started at Stromboli on August 6, 2014, which had been preceded by 2 months of increased Strombolian activity and several lava overflows from the craters. The eruption was characterized by a lava effusion in Sciara del Fuoco from a fracture at 650 m a.s.l. that lasted until November 13–17. Here we present the first geochemical observations of this eruption, based on the soil CO2 flux in the summit area, and on 3He/4He ratios in the thermal waters near Stromboli village. We infer that this eruption was triggered by the gradual replenishment of the feeding system by a CO2- and 3He-rich magma at the end of 2013 and after June 2014, suggested by the increase in 3He/4He ratio before eruption, which reached its highest value since 2007. We thus infer that this eruption was unusual and we finally speculate on the evolutionary scenario of post eruption.
    Description: Published
    Description: 2235–2243
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli ; eruption ; soil CO2 flux ; 3He/4He ratio ; thermal waters ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-24
    Description: This work arises from the field observations made during the civil protection emergency period connected to the 2007 Stromboli eruption. We observed changes in the shallow feeding system of the volcano to which we give a volcanological interpretation and the relative implications. Here we describe the processes that occurred in the upper feeding system from the end of the 2007 effusive eruption on 3 April to the renewal of the strombolian explosive activity at the summit craters (30 June), interpreted using multidisciplinary data. We used thermal camera data collected both from helicopter and from a fixed station at 400 m to retrieve the evolving summit crater activity. These data, compared with seismic signals and published geochemical records, allowed us to detail the shifting of the degassing activity within the crater terrace from NE to SW, occurred between 15 and 25 April 2007 prior to the resumption of the strombolian activity. In particular, from mid-April, a gradual SW displacement in the maximum apparent temperatures was recorded at the vents within the summit craters, together with a change in the very long period location and confirmed by variations in geochemical indicators (CO2∕SO2 plume ratios and CO2 fluxes) from literature. The shallow feeding system experienced a major readjustment after the end of the effusive activity, determining variations in the pressure leakage of the source, slowly deepening and shifting toward SW. All these data, together with the framework supplied by previous structural surveys, allowed us to propose that the compaction of debris accumulated in the uppermost conduit by inward crater collapses, occurred in early March, produced the observed anomalies. At Stromboli, major morphology changes, taking place in the following years, were anticipated by these small and apparently minor processes occurred in the upper feeding system. Other studies are relating similar changes to modifications of the eruptive activity also at other open-conduit volcanoes, so we believe that it may be important to have a constant monitoring of these phenomena in order to better understand their shallow feeding systems.
    Description: This paper was partially supported by a grant to S.C. (Project INGV-DPC Paroxysm V2/03, 2008–2010) funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Italian Civil Protection.
    Description: Published
    Description: 7376–7395
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; thermal imaging ; multidisciplinary study ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: An array of nine three-component broadband seismometers was deployed in two different configurations on Stromboli volcano. The analysis of the seismic wavefield related to volcanic explosions revealed some observations which offer a completely new insight into the internal dynamics of a volcano. These new observations are restricted to the low-frequency range below 1 Hz and underline, therefore, the superiority of broadband recordings over conventional short-period observations. Surprisingly simple wavelets indicate an initially contracting source mechanism. Gas-jets that could not be seen in a short-period seismic record at all, generate a clear dilatational wavelet in a broadband recording suggesting the same contracting source mechanism. The analysis of particle motion and seismic array techniques permits a location of the seismic source. We find low-frequency signals of 3s and 6s period that are not related to eruptions and do not share a common source with the eruption-related events. A video recording of visible volcanic activity at the crater region allows one to correlate precisely eruptive features with seismic signals.
    Description: Published
    Description: 749-752
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: N/A or not JCR
    Description: restricted
    Keywords: Stromboli ; volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.
    Description: INGV-DPC “V2” and “Paroxysm,” FIRB-MIUR “Research and Development of New Technologies for Protection and Defense of Territory from Natural Risks,” and FP7-PEOPLE-IEF-2008–235328 “NEMOH” ITN projects
    Description: Published
    Description: 3096–3102
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: jet noise ; volcano acoustics ; Stromboli ; Yasur ; Fuego ; strombolian eruption ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesting substantial scrubbing of magmatic S by the hydrothermal system. However, the fumarolic carbon dioxide (CO2) output is ∼460±160 tons/day (mean±SD), which is surprisingly high for a dormant volcano in the hydrothermal stage of activity, and results in a combined (fumaroles + soil) CO2 output of ∼1560 tons/day. Assuming magma to be the predominant source, we propose that the current CO2 output can be supplied by either (i) a large (0.6–4.6 km3), deeply stored (〉7 km) magmatic source with low CO2 contents (0.05–0.1 wt%) or (ii) by a small to medium-sized (∼0.01–0.1 km3) but CO2-rich (2 wt%) magma, possibly stored at pressures of ∼100 to 120 MPa. Independent geophysical evidence (e.g., inferred from geodetic and gravity data) is needed to distinguish between these two possibilities.
    Description: Published
    Description: 4153–4169
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; calderas ; gas output ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The interpretation of dynamic processes that occur in volcanic calderas is not simple. The ground deformations and the local seismicity, which in other volcanic contexts are usually regarded as precursors to eruption, in caldera environment in many cases are not followed by any eruption. We formulate a general hypothesis that can explain these behaviors. Our hypothesis is that the intrusion of a sill can be responsible for the dynamics observed during unrest at calderas. In order to investigate the reliability of this hypothesis, we developed a dynamic model of sill intrusion in a shallow volcanic environment. In our model, the sill, fed by a deeper magma reservoir, intrudes below a horizontal elastic plate, representing the overlying rocks, and expands with axisymmetric geometry. The model is based on the numerical solution of the equation for the elastic plate, coupled with a Navier-Stokes equation for simulating the dynamics of the sill intrusion. We performed a number of simulations, with the objective of showing the main features of the model. In the experiments, when the feeding process stops, the vertical movement reverses its trend and the area of maximum uplift undergoes subsidence. Under certain conditions the subsidence can occur even during the intrusion of the sill. The stress field produced by the intrusion is mainly concentrated in a circular zone that follows the sill intrusion front. The features predicted by the model are consistent with many observations carried out on different calderas as reported in the scientific literature.
    Description: Published
    Description: 3986–4000
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: sill intrusion ; caldera ; volcano geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Mt Etna volcano (Italy) typically generates lava fountains and Strombolian eruptions from the summit craters, producing significant emissions of tephra which may cause moderate to high impact both in the atmosphere and on the ground. However, we have also witnessed a number of minor ash emissions that, although far less powerful, may pose considerable volcanic hazards. In this paper, we deal with three ash emissions occurring in 2010 (8 April at Southeast Crater, 25 August at Bocca Nuova, and 14–15 November at Northeast Crater), correlating their volcanological features with the associated seismoacoustic signals. We provide details regarding the chronology, eruption column, dispersal of the deposit, and texture (grain size, componentry and morphology) of the emitted ash. Each eruptive episode has also been characterized by means of seismo-acoustic analyses evaluating the volcanic acoustic-seismic ratio (VASR). Furthermore, the source of volcanic tremor recorded from March to December 2010 was localized. The joint volcanological and seismo-acoustic analyses allowed distinguishing two main kinds of ash emissions: types a (8 April and 25 August) and b (14–15 November). Regarding the former, the accumulation of gas below a dense cap rock obstructing the conduit vent, giving rise, with the uncorking, to impulsive explosivity, was hypothesized. The latter type instead is characterized by a longer-lasting and less explosivity, likely due to the existence of open conduit conditions. Therefore, type b ash emissions are less hazardous than type a. This simple model, regarding minor explosive activity, may constitute a starting point to assess the volcanic risk from unexpected explosions.
    Description: Published
    Description: 51-70
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: reserved
    Keywords: Mt Etna ; seismo-acoustic signals ; ash emissions ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Between January 2011 and April 2013, Mt. Etna's eruptive activity consisted of episodic intra-crater strombolian explosions and paroxysms from Bocca Nuova, Voragine, and the New South-East (NSEC) summit craters, respectively. Eruptions from NSEC consisted of initial increasing strombolian activity and lava flow output, passing to short-lasting lava fountaining. In this study we present seismic, infrasound, radiometric, plume SO2 and HCl fluxes and geodetic data collected by the INGV monitoring system between May 2012 and April 2013. The multi-parametric approach enabled characterization of NSEC eruptive activity at both daily and monthly time scales and tracking of magma movement within Mt. Etna's plumbing system. While seismic, infrasound and radiometric signals give insight on the energy and features of the 13 paroxysms fed by NSEC, SO2 and halogen fluxes shed light on the likely mechanisms triggering the eruptive phenomena. GPS data provided clear evidence of pressurization of Mt. Etna's plumbing system from May 2012 to middle February 2013 and depressurization during the February-April 2013 eruptive activity. Taking into account geochemical data, we propose that the paroxysms' sequence represented the climax of a waxing-waning phase of degassing that had started as early as December 2012, and eventually ended in April 2013. Integration of the multidisciplinary observations suggests that the February-April 2013 eruptive activity reflects a phase of release of a volatile-rich batch of magma that had been stored in the shallow volcano plumbing system at least four months before, and with the majority of gas released between February and March 2013. This article is protected by copyright. All rights reserved.
    Description: European FP7 MED-SUV (MEditerranean SUpersite Volcanoes). Grant Number: 308665 European Research Council European FP7 (FP/2007-2013)/ERC. Grant Number: 279802 SIGMA (Sistema Integrato di sensori in ambiente cloud per la Gestione Multirischio Avanzata)
    Description: Published
    Description: 1932–1949
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; paroxysmal activity ; SO2 and HCl fluxes ; infrasound and seismic signals ; radiometry ; ground deformation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: We present the results of laboratory experiments on the aggregation and disaggregation of colliding volcanic ash particles. Ash particles of different composition and size 〈90 µm were held in turbulent suspension and filmed in high speed while colliding, aggregating, and disaggregating, forming a growing layer of electrostatically bound particles along a vertical plate. At room conditions and regardless of composition, 60–80% of the colliding particles smaller than 32 µm remained aggregated. In contrast, aggregation of particles larger than 63 µm was negligible, and, when a layer formed, periods when disaggregation (mainly by collisions or drag) exceeded aggregation occurred twice as frequently than for smaller particles. An empirical relationship linking the aggregation index, i.e., the effective fraction of aggregated particles surviving disaggregation, to the mean particle collision kinetic energy is provided. Our results have potential implications on the dynamics of volcanic plumes and ash mobility in the environment.
    Description: INGV-DPC project V1 “Probabilistic evaluation of volcanic hazard”; EU Seventh Programme FP7 “MED-SUV” grant agreement 308665
    Description: Published
    Description: 1068–1075
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic ash ; disaggregation ; experimental modeling ; volcanic plumes ; aggregation processes ; colliding particles ; sticking rate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Piton de la Fournaise (PdF) is recognised as one of the world’s most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced. Yet, with the sole exception of rather modest intracrateric fumarole activity, this seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence. Measurement campaigns were undertaken during a long-lasting quiescent period (2012-2014) and just after a short lived summit eruption (June 2014) in order to identify potential degassing areas in relation to the main structural features of the volcano (ex. rift zones) with the aim of developing a broader understanding of the geometry of the plumbing and degassing system. In order to assess the possible existence of anomalous soil CO2 flux, 513 measurements were taken along transects roughly orthogonal to the known tectonic lineaments crossing PdF edifice. In addition, 53 samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO2 concentration in the soil. CO2 flux values range from 10 to 1300 g m-2 d-1 while 13C are between -26.6 to -8‰. The results of our investigation clearly indicate that there is a strong spatial correlation between the anomalous high values of diffusive soil emissions and the main rift zones cutting the PdF massif and, moreover, that generally high soil CO2 fluxes show a d13C signature clearly related to a magmatic origin.
    Description: INSU (CNRS) and La Réunion Préfecture (Projet pour la quantification de l’aléa volcanique à La Réunion)
    Description: Published
    Description: 4388–4404
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 soil degassing anomalies at Piton de la Fournaise ; d13C magmatic signature ; Close link between anomalous CO2 degassing and the main seismotectonic structures ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: This paper focuses on the chemical composition changes in soil gases through both a theoretical model and laboratory experiments. The model describes the one-dimensional mass transfer process, which is triggered by changes in the flux parameters of the system, and the time-dependent evolution of the composition of the soil gases as a function of i) the pristine gas mixture, ii) the diffusivity of the chemicals, and iii) the thickness of the transited medium. Carbon dioxide (CO2), hydrogen (H2), and helium (He) were used in a laboratory-scale flux simulator to investigate the evolution of the gas composition profile in an artificial soil of constant thickness. The agreement between the theoretical calculations and the experimental results supports the validity of the model. Our results indicate a good reproducibility of the transient changes in the concentrations of CO2, He, and H2 in CO2-rich gas mixtures that contain He and H2 as trace gases. Finally, the theoretical results were used to analyze the H2 and CO2 continuous monitoring data collected at Etna volcano in 2010
    Description: Published
    Description: 1565–1583
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: open
    Keywords: Soil gases ; Volcanic gas composition ; Hydrogen ; Carbon dioxide ; CO2 ; Helium ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: On 28 December 2014, eruptive activity resumed at Mount Etna with fire fountain activity feeding two lava flows on the eastern and southwestern upper flanks of the volcano. Unlike all previous summit activity, this eruption produced clear deformation at the summit of the volcano. GPS displacements and Sentinel-1A ascending interferogramswere calculated in order to image the ground deformation pattern accompanying the eruption. The displacements observed by GPS depict a local ground deformation pattern, affecting only the upperpart of the volcano.Despite snowcover onthe summit, differential interferometry synthetic aperture radar (DInSAR) data allowed obtainingmore detail onthe grounddeformation pattern on the upper eastern side of the volcano. Three-dimensional GPS displacements inversion located a very shallow NE-SW intrusion just beneath the New Southeast Crater. However, this model cannot justify all the deformation observed by DInSAR thus revealing a gravitational failure of the lava flow field
    Description: Published
    Description: 2727–2733
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Sentinel-1A interferogram details the ground deformation field ; GPS data are analyzed for modeling the dyke intrusion ; Data comparison highlights an incipient slope failure ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: To evaluate the volcanic processes leading to the 25–26 October 2013 lava fountain at Mount Etna, we jointly investigated gravity, GPS, and DInSARmeasurements covering the late-June to early-November time interval. We used finite element modeling to infer a shallow magmatic reservoir which (i) inflated since July 2013, (ii) fed the volcanic activity at the summit craters during 25–26 October, and (iii) deflated due to magma drainage related to this volcanic activity. We suggested that this reservoir belongs to a shallow volume, which is located beneath the summit area and is replenished by magma rising from deep reservoirs and fed the short-term volcanic activity, representing a persistent shallow magmatic plumbing system of Etna. In addition, the model results show that there is a large discrepancy between the erupted and shallow reservoir deflation volumes, which could be reasonably attributable to a highly compressible volatile-rich magma.
    Description: Published
    Description: 3246–3253
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Gravity and deformation signatures of the 26 October 2013 Mount Etna lava fountain ; Integrated finite element-based inversion of gravity and GPS data ; Inference on a highly compressible volatile-rich magma in the magmatic reservoir ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-12-15
    Description: Relationships between frequency and intensity of volcanic eruptions are actively sought by geophysicists for both monitoring and research purposes. By analyzing surveillance videos of persistent volcanic activity at Stromboli (Italy), we derived the frequency and jet height of 〉4000 explosions that occurred in 72 h-long time windows sampled yearly from 2005 to 2009. We found a positive relationship linking explosion frequency and jet height (linked to eruption intensity) when averaging the two parameters over time intervals from hours to days, with a stronger correlation for longer intervals. We interpret this behavior as the response of the magmatic system to variable influx of magma and gas at depth, increased flux at depth causing more frequent and stronger explosions at the surface. This relationship entails concurrent control of source processes over explosion frequency and intensity, directly impacting modeling of explosion sources at persistently active volcanoes in general and hazard assessment at Stromboli in particular.
    Description: DPC-INGV Project V2 “Paroxysm”
    Description: Published
    Description: 1–5
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Strombolian frequency ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-01-19
    Description: In situ measurements have been the basis for monitoring volcanic gas emissions for many years and—being complemented by remote sensing techniques—still play an important role to date. Concerning in situ techniques for sampling a dilute plume, an increase in accuracy and a reduction of detection limits are still necessary for most gases (e.g., CO2, SO2, HCl, HF, HBr, HI). In this work, the Raschig-Tube technique (RT) is modified and utilized for application on volcanic plumes. The theoretical and experimental absorption properties of the RT and the Drechsel bottle (DB) setups are characterized and both are applied simultaneously to the well-established Filter packs technique (FP) in the field (on Stromboli Island and Mount Etna). The comparison points out that FPs are the most practical to apply but the results are errorprone compared to RT and DB, whereas the RT results in up to 13 times higher analyte concentrations than the DB in the same sampling time. An optimization of the analytical procedure, including sample pretreatment and analysis by titration, Ion Chromatography, and Inductively Coupled Plasma Mass Spectrometry, led to a comprehensive data set covering a wide range of compounds. In particular, less abundant species were quantified more accurately and iodine was detected for the first time in Stromboli’s plume. Simultaneously applying Multiaxis Differential Optical Absorption Spectroscopy (MAX-DOAS) the chemical transformation of emitted bromide into bromine monoxide (BrO) from Stromboli and Etna was determined to 3–6% and 7%, respectively, within less than 5 min after the gas release from the active vents.
    Description: Published
    Description: 2797–2820
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: plume ; volcano ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...