ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 631.4  (3)
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (2)
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
  • Blackwell Publishing Ltd  (6)
  • 1
    Publication Date: 2021-07-04
    Description: Most common machine learning (ML) algorithms usually work well on balanced training sets, that is, datasets in which all classes are approximately represented equally. Otherwise, the accuracy estimates may be unreliable and classes with only a few values are often misclassified or neglected. This is known as a class imbalance problem in machine learning and datasets that do not meet this criterion are referred to as imbalanced data. Most datasets of soil classes are, therefore, imbalanced data. One of our main objectives is to compare eight resampling strategies that have been developed to counteract the imbalanced data problem. We compared the performance of five of the most common ML algorithms with the resampling approaches. The highest increase in prediction accuracy was achieved with SMOTE (the synthetic minority oversampling technique). In comparison to the baseline prediction on the original dataset, we achieved an increase of about 10, 20 and 10% in the overall accuracy, kappa index and F‐score, respectively. Regarding the ML approaches, random forest (RF) showed the best performance with an overall accuracy, kappa index and F‐score of 66, 60 and 57%, respectively. Moreover, the combination of RF and SMOTE improved the accuracy of the individual soil classes, compared to RF trained on the original dataset and allowed better prediction of soil classes with a low number of samples in the corresponding soil profile database, in our case for Chernozems. Our results show that balancing existing soil legacy data using synthetic sampling strategies can significantly improve the prediction accuracy in digital soil mapping (DSM). Highlights Spatial distribution of soil classes in Iran can be predicted using machine learning (ML) algorithms. The synthetic minority oversampling technique overcomes the drawback of imbalanced and highly biased soil legacy data. When combining a random forest model with synthetic sampling strategies the prediction accuracy of the soil model improves significantly. The resulting new soil map of Iran has a much higher spatial resolution compared to existing maps and displays new soil classes that have not yet been mapped in Iran.
    Description: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
    Keywords: 631.4 ; covariates ; imbalanced data ; machine learning ; random forest ; soil legacy data
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-16
    Description: The application of biochar to agricultural soils to increase nutrient availability, crop production and carbon sequestration has gained increasing interest but data from field experiments on temperate, marginal soils are still under‐represented. In the current study, biochar, produced from organic residues (digestates) from a biogas plant, was applied with and without digestates at low (3.4 t ha−1) and intermediate (17.1 t ha−1) rates to two acidic and sandy soils in northern Germany that are used for corn (Zea mays L.) production. Soil nutrient availability, crop yields, microbial biomass and carbon dioxide (CO2) emissions from heterotrophic respiration were measured over two consecutive years. The effects of biochar application depended on the intrinsic properties of the two tested soils and the biochar application rates. Although the soils at the fallow site, with initially low nutrient concentrations, showed a significant increase in pH, soil nutrients and crop yield after low biochar application rates, a similar response was found at the cornfield site only after application of substantially larger amounts of biochar. The effect of a single dose of biochar at the beginning of the experiment diminished over time but was still detectable after 2 years. Whereas plant available nutrient concentrations increased after biochar application, the availability of potentially phytotoxic trace elements (Zn, Pb, Cd, Cr) decreased significantly, and although slight increases in microbial biomass carbon and heterotrophic CO2 fluxes were observed after biochar application, they were mostly not significant. The results indicate that the application of relatively small amounts of biochar could have positive effects on plant available nutrients and crop yields of marginal arable soils and may decrease the need for mineral fertilizers while simultaneously increasing the sequestration of soil organic carbon. Highlights A low rate of biochar increased plant available nutrients and crop yield on marginal soils. Biochar application reduced the availability of potentially harmful trace elements. Heterotrophic respiration showed no clear response to biochar application. Biochar application may reduce fertilizer need and increase carbon sequestration on marginal soils.
    Description: German Academic Exchange Service http://dx.doi.org/10.13039/501100001655
    Description: Institute Strategic Programme grants, “Soils to Nutrition”
    Keywords: 631.4 ; black carbon ; carbon sequestration ; corn ; digestate ; heterotrophic respiration ; marginal soils ; microbial biomass
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-05
    Description: Nitrogen (N) fertilization is the major contributor to nitrous oxide (N2O) emissions from agricultural soil, especially in post‐harvest seasons. This study was carried out to investigate whether ryegrass serving as cover crop affects soil N2O emissions and denitrifier community size. A microcosm experiment was conducted with soil planted with perennial ryegrass (Lolium perenne L.) and bare soil, each with four levels of N fertilizer (0, 5, 10 and 20 g N m−2; applied as calcium ammonium nitrate). The closed‐chamber approach was used to measure soil N2O fluxes. Real‐time PCR was used to estimate the biomass of bacteria and fungi and the abundance of genes involved in denitrification in soil. The results showed that the presence of ryegrass decreased the nitrate content in soil. Cumulative N2O emissions of soil with grass were lower than in bare soil at 5 and 10 g N m−2. Fertilization levels did not affect the abundance of soil bacteria and fungi. Soil with grass showed greater abundances of bacteria and fungi, as well as microorganisms carrying narG, napA, nirK, nirS and nosZ clade I genes. It is concluded that ryegrass serving as a cover crop holds the potential to mitigate soil N2O emissions in soils with moderate or high NO3− concentrations. This highlights the importance of cover crops for the reduction of N2O emissions from soil, particularly following N fertilization. Future research should explore the full potential of ryegrass to reduce soil N2O emissions under field conditions as well as in different soils. Highlights This study was to investigate whether ryegrass serving as cover crop affects soil N2O emissions and denitrifier community size; Plant reduced soil N substrates on one side, but their root exudates stimulated denitrification on the other side; N2O emissions were lower in soil with grass than bare soil at medium fertilizer levels, and growing grass stimulated the proliferation of almost all the denitrifying bacteria except nosZ clade II; Ryegrass serving as a cover crop holds the potential to mitigate soil N2O emissions.
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: The National Science Project for University of Anhui Province
    Keywords: 551.9 ; 631.4 ; denitrification ; perennial ryegrass (Lolium perenne L.) ; soil bacteria ; soil CO2 emissions ; soil N2O emissions
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present an improved evaluation of the current strain and stress fields in Southern Apennines (Italy) obtained through a careful analysis of geodetic, seismological and borehole data. In particular, our analysis provides an updated comparison between the accrued strain recorded by geodetic data, and the strain released by seismic activity in a region hit by destructive historical earthquakes. To this end, we have used 9 years of GPS observations (2001-2010) from a dense network of permanent stations, a dataset of 73 well constrained stress indicators (borehole breakouts and focal mechanisms of moderate to large earthquakes), and published estimations of the geological strain accommodated by active faults in the region. Although geodetic data are generally consistent with seismic and geologic information, previously unknown features of the current deformation in southern Italy emerge from this analysis. The newly obtained GPS velocity field supports the well-established notion of a dominant NE-SW-oriented extension concentrated in a ~50 km wide belt along the topographic relief of the Apennines, as outlined by the distribution of seismogenic normal faults. Geodetic deformation is, however, non uniform along the belt, with two patches of higher strain-rate and shear stress accumulation in the north (Matese Mountains) and in the south (Irpinia area). Low geodetic strain-rates are found in the Bradano basin and Apulia plateau to the east. Along the Ionian Sea margin of southern Italy, in southern Apulia and eastern Basilicata and Calabria, geodetic velocities indicate NW-SE extension which is consistent with active shallow-crustal gravitational motion documented by geological studies. In the west, along the Tyrrhenian margin of the Campania region, the tectonic geodetic field is disturbed by volcanic processes. Comparison between the magnitude of the geodetic and the seismic strain-rates (computed using a long historical seismicity catalogue) allow detecting areas of high correlation, particularly along the axis of the mountain chain, indicating that most of the geodetic strain is released by earthquakes. This relation does not hold for the instrumental seismic catalogue, as a consequence of the limited time span covered by instrumental data. In other areas (e.g. Murge plateau in central Apulia), where seismicity is very low or absent, the yet appreciable geodetic deformation might be accommodated in aseismic mode. Overall, the excellent match between the stress and the strain-rate directions in much of the Apennines indicates that both earthquakes and ground deformation patterns are driven by the same crustal forces.
    Description: Published
    Description: 1270-1282
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy ; Plate motions ; Neotectonics ; Europe ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Several volcanoes worldwide have shown changes in their stress state as a consequence of the deformation produced by the pressurization of a magmatic body. This study investigates seismic swarms occurring on the western flank of Mt. Etna in January 1997 - January 1998. Integrating seismic observations and geodetic data, we constrained the seismogenic fault system, and on the basis of stress tensor inversion and SHMAX analyses, we infer an inflating pressure source located at 5.5 km b.s.l. beneath the west portion of summit area. Evaluation of Coulomb failure stress (CFS) related to the proposed model, showed how a large part of the seismogenic fault underwent a significant CFS increase (500 kPa). We infer the presence of a sub-vertical faulted region, potentially weak, N50°E oriented beneath the western sector of Mt. Etna. This structure could be brought closer to failure thereby generating seismic swarms as the effect of elastic stress transfer induced by movement and/or overpressure of magmatic masses within the upper crust under the volcano.
    Description: This research was funded by the INGV–DPC 2007–2009 Agreement (Project V4_Flank).
    Description: Published
    Description: 339-348
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; modelling ; Seismicity ; GPS monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The tectonic deformation of the Lipari-Vulcano complex, one of the most important active volcanic areas of Mediterranean region, is studied here through the analysis of ten years (1996-2006) of GPS data from both 3 permanent and 13 non-permanent stations. This area can be considered crucial for the understanding of the Eurasia-Africa plates interaction in the Mediterranean area, and, in general, this work emphasize a methodological approach, already applied in other areas worldwide (e.g. Shen et al., 1996, El-Fiki and Kato, 1999) where geodetic data and strain parameters maps of critical areas can help to improve our understanding of their geodynamical aspects. In this framework, this study is aimed at providing a kinematic deformation model on the basis of the dense geodetically estimated velocities of the Lipari-Vulcano complex. In particular, the observed deformation pattern can be described by a mix between 1) the main N-S regional compression and 2) a NNE-SSW compression with a small right-lateral strike slip component acting along a tectonic structure N°40W trending located between the two islands. This pattern was inspected through a simplified synthetic model.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 370–377
    Description: 1.9. TTC - Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Aeolian Islands ; strain ; modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...