ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (2,852)
  • *Biological Evolution  (1,390)
  • American Association for the Advancement of Science (AAAS)  (4,144)
  • American Association of Petroleum Geologists (AAPG)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2016-01-20
    Description: The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11-base pair (bp) activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits characteristic single-bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Sensory neuron subtypes can therefore evolve through single-bp changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rister, Jens -- Razzaq, Ansa -- Boodram, Pamela -- Desai, Nisha -- Tsanis, Cleopatra -- Chen, Hongtao -- Jukam, David -- Desplan, Claude -- K99EY023995/EY/NEI NIH HHS/ -- R01 EY13010/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1258-61. doi: 10.1126/science.aab3417.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA. ; Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA. cd38@nyu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785491" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Drosophila Proteins/*genetics ; Drosophila melanogaster/genetics/growth & development ; *Gene Expression Regulation, Developmental ; Mutation ; Photoreceptor Cells, Invertebrate/*physiology ; Promoter Regions, Genetic/*genetics ; Rhodopsin/*genetics ; Transcription Factors/metabolism ; Vision, Ocular/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-20
    Description: Congenital heart disease (CHD) patients have an increased prevalence of extracardiac congenital anomalies (CAs) and risk of neurodevelopmental disabilities (NDDs). Exome sequencing of 1213 CHD parent-offspring trios identified an excess of protein-damaging de novo mutations, especially in genes highly expressed in the developing heart and brain. These mutations accounted for 20% of patients with CHD, NDD, and CA but only 2% of patients with isolated CHD. Mutations altered genes involved in morphogenesis, chromatin modification, and transcriptional regulation, including multiple mutations in RBFOX2, a regulator of mRNA splicing. Genes mutated in other cohorts examined for NDD were enriched in CHD cases, particularly those with coexisting NDD. These findings reveal shared genetic contributions to CHD, NDD, and CA and provide opportunities for improved prognostic assessment and early therapeutic intervention in CHD patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Homsy, Jason -- Zaidi, Samir -- Shen, Yufeng -- Ware, James S -- Samocha, Kaitlin E -- Karczewski, Konrad J -- DePalma, Steven R -- McKean, David -- Wakimoto, Hiroko -- Gorham, Josh -- Jin, Sheng Chih -- Deanfield, John -- Giardini, Alessandro -- Porter, George A Jr -- Kim, Richard -- Bilguvar, Kaya -- Lopez-Giraldez, Francesc -- Tikhonova, Irina -- Mane, Shrikant -- Romano-Adesman, Angela -- Qi, Hongjian -- Vardarajan, Badri -- Ma, Lijiang -- Daly, Mark -- Roberts, Amy E -- Russell, Mark W -- Mital, Seema -- Newburger, Jane W -- Gaynor, J William -- Breitbart, Roger E -- Iossifov, Ivan -- Ronemus, Michael -- Sanders, Stephan J -- Kaltman, Jonathan R -- Seidman, Jonathan G -- Brueckner, Martina -- Gelb, Bruce D -- Goldmuntz, Elizabeth -- Lifton, Richard P -- Seidman, Christine E -- Chung, Wendy K -- T32 HL007208/HL/NHLBI NIH HHS/ -- Arthritis Research UK/United Kingdom -- British Heart Foundation/United Kingdom -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1262-6. doi: 10.1126/science.aac9396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA, USA. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. ; Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. NIHR Cardiovascular Biomedical Research Unit at Royal Brompton & Harefield NHS Foundation and Trust and Imperial College London, London, UK. National Heart & Lung Institute, Imperial College London, London, UK. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston MA, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Harvard University, Boston, MA, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Department of Cardiology, University College London and Great Ormond Street Hospital, London, UK. ; Department of Pediatrics, University of Rochester Medical Center, The School of Medicine and Dentistry, Rochester, NY, USA. ; Section of Cardiothoracic Surgery, University of Southern California Keck School of Medicine, Los Angeles, CA, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. Yale Center for Genome Analysis, Yale University, New Haven, CT, USA. ; Yale Center for Genome Analysis, Yale University, New Haven, CT, USA. ; Steven and Alexandra Cohen Children's Medical Center of New York, New Hyde Park, NY, USA. ; Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY, USA. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA. ; Department of Neurology, Columbia University Medical Center, New York, NY, USA. ; Department of Pediatrics, Columbia University Medical Center, New York, NY, USA. ; Department of Cardiology, Children's Hospital Boston, Boston, MA, USA. ; Division of Pediatric Cardiology, University of Michigan, Ann Arbor, MI, USA. ; Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada. ; Department of Cardiology, Boston Children's Hospital, Boston, MA, USA. ; Department of Pediatric Cardiac Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. ; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. ; Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA. ; Heart Development and Structural Diseases Branch, Division of Cardiovascular Sciences, NHLBI/NIH, Bethesda, MD, USA. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. Howard Hughes Medical Institute, Yale University, New Haven, CT, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Howard Hughes Medical Institute, Harvard University, Boston, MA, USA. Cardiovascular Division, Brigham & Women's Hospital, Harvard University, Boston, MA, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu. ; Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA. bruce.gelb@mssm.edu goldmuntz@email.chop.edu martina.brueckner@yale.edu richard.lifton@yale.edu cseidman@genetics.med.harvard.edu wkc15@cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785492" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/abnormalities/metabolism ; Child ; Congenital Abnormalities/genetics ; Exome/genetics ; Heart Defects, Congenital/*diagnosis/*genetics ; Humans ; Mutation ; Nervous System Malformations/*genetics ; Neurogenesis/*genetics ; Prognosis ; RNA Splicing/genetics ; RNA, Messenger/genetics ; RNA-Binding Proteins/genetics ; Repressor Proteins/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alexandrov, Ludmil B -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1175. doi: 10.1126/science.aad7363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM 87545, USA. lba@lanl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785464" target="_blank"〉PubMed〈/a〉
    Keywords: *Computer Simulation ; DNA Mutational Analysis ; Genomics/*methods ; Humans ; *Models, Genetic ; *Mutagenesis ; Mutation ; Neoplasms/classification/*genetics/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1186-7. doi: 10.1126/science.350.6265.1186.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785474" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Caloric Restriction ; Death ; Humans ; Hydra/genetics/physiology ; Longevity/genetics/*physiology ; Mice ; Mutation ; Phosphatidylinositol 3-Kinases/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-20
    Description: Research into stem cells and aging aims to understand how stem cells maintain tissue health, what mechanisms ultimately lead to decline in stem cell function with age, and how the regenerative capacity of somatic stem cells can be enhanced to promote healthy aging. Here, we explore the effects of aging on stem cells in different tissues. Recent research has focused on the ways that genetic mutations, epigenetic changes, and the extrinsic environmental milieu influence stem cell functionality over time. We describe each of these three factors, the ways in which they interact, and how these interactions decrease stem cell health over time. We are optimistic that a better understanding of these changes will uncover potential strategies to enhance stem cell function and increase tissue resiliency into old age.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodell, Margaret A -- Rando, Thomas A -- P01 AG036695/AG/NIA NIH HHS/ -- R01 AG047820/AG/NIA NIH HHS/ -- R01 AR062185/AR/NIAMS NIH HHS/ -- R37 AG023806/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 4;350(6265):1199-204. doi: 10.1126/science.aab3388.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, and Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. goodell@bcm.edu rando@stanford.edu. ; Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA, and Center for Regenerative Rehabilitation, Veterans Administration Palo Alto Health Care System, Palo Alto, CA 94304, USA. goodell@bcm.edu rando@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26785478" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*physiology ; Aging/*physiology ; Animals ; Cell Aging ; Epigenesis, Genetic ; Genetic Drift ; *Health ; Humans ; Mice ; Mutation ; Organ Specificity ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-26
    Description: Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Yuan -- Chen, Xiang -- Elsasser, Suzanne -- Stocks, Bradley B -- Tian, Geng -- Lee, Byung-Hoon -- Shi, Yanhong -- Zhang, Naixia -- de Poot, Stefanie A H -- Tuebing, Fabian -- Sun, Shuangwu -- Vannoy, Jacob -- Tarasov, Sergey G -- Engen, John R -- Finley, Daniel -- Walters, Kylie J -- New York, N.Y. -- Science. 2016 Feb 19;351(6275). pii: aad9421. doi: 10.1126/science.aad9421.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. ; Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. Linganore High School, Frederick, MD 21701, USA. ; Biophysics Resource, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu. ; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu. ; Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. j.engen@neu.edu kylie.walters@nih.gov daniel_finley@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912900" target="_blank"〉PubMed〈/a〉
    Keywords: DNA-Binding Proteins/metabolism ; Endopeptidases/metabolism ; Metabolic Networks and Pathways ; Models, Molecular ; Mutation ; Proteasome Endopeptidase Complex/chemistry/genetics/*metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Ubiquitin-Specific Proteases/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):440-3. doi: 10.1126/science.351.6272.440.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823410" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; Child, Preschool ; DNA Mutational Analysis ; DNA Repair/genetics ; Female ; *Genes, Neoplasm ; *Genetic Predisposition to Disease ; Humans ; Male ; Mutation ; Neoplasms/*genetics/mortality ; Pedigree ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maxmen, Amy -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1378-80. doi: 10.1126/science.351.6280.1378.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013707" target="_blank"〉PubMed〈/a〉
    Keywords: Anal Canal/*anatomy & histology ; Animals ; *Biological Evolution ; Ctenophora/*anatomy & histology/genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-05
    Description: As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8(+)tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non-small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy-induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGranahan, Nicholas -- Furness, Andrew J S -- Rosenthal, Rachel -- Ramskov, Sofie -- Lyngaa, Rikke -- Saini, Sunil Kumar -- Jamal-Hanjani, Mariam -- Wilson, Gareth A -- Birkbak, Nicolai J -- Hiley, Crispin T -- Watkins, Thomas B K -- Shafi, Seema -- Murugaesu, Nirupa -- Mitter, Richard -- Akarca, Ayse U -- Linares, Joseph -- Marafioti, Teresa -- Henry, Jake Y -- Van Allen, Eliezer M -- Miao, Diana -- Schilling, Bastian -- Schadendorf, Dirk -- Garraway, Levi A -- Makarov, Vladimir -- Rizvi, Naiyer A -- Snyder, Alexandra -- Hellmann, Matthew D -- Merghoub, Taha -- Wolchok, Jedd D -- Shukla, Sachet A -- Wu, Catherine J -- Peggs, Karl S -- Chan, Timothy A -- Hadrup, Sine R -- Quezada, Sergio A -- Swanton, Charles -- 12100/Cancer Research UK/United Kingdom -- 1R01CA155010-02/CA/NCI NIH HHS/ -- 1R01CA182461-01/CA/NCI NIH HHS/ -- 1R01CA184922-01/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1463-9. doi: 10.1126/science.aaf1490. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Francis Crick Institute, London WC2A 3LY, UK. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London (UCL), London WC1E 6BT, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, 1970 Frederiksberg C, Denmark. ; The Francis Crick Institute, London WC2A 3LY, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. ; The Francis Crick Institute, London WC2A 3LY, UK. ; Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. Department of Cellular Pathology, UCL, London WC1E 6BT, UK. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium (DKTK), 69121 Heidelberg, Germany. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Hematology/Oncology Division, 177 Fort Washington Avenue, Columbia University, New York, NY 10032, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Department of Internal Medicine, Brigham and Woman's Hospital, Boston, MA 02115, USA. ; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. Cancer Immunology Unit, UCL Cancer Institute, UCL, London WC1E 6BT, UK. s.quezada@ucl.ac.uk charles.swanton@crick.ac.uk. ; The Francis Crick Institute, London WC2A 3LY, UK. Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London WC1E 6BT, UK. s.quezada@ucl.ac.uk charles.swanton@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940869" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/*immunology ; Aged ; Aged, 80 and over ; Antigens, Neoplasm/genetics/*immunology ; Antineoplastic Agents/therapeutic use ; CD4-Positive T-Lymphocytes/*immunology ; CTLA-4 Antigen/immunology ; Carcinoma, Non-Small-Cell Lung/genetics/immunology ; Cell Cycle Checkpoints/immunology ; Female ; Humans ; *Immunologic Surveillance ; Lung Neoplasms/drug therapy/genetics/*immunology ; Lymphocytes, Tumor-Infiltrating/immunology ; Male ; Melanoma/immunology ; Middle Aged ; Mutation ; Programmed Cell Death 1 Receptor/immunology ; Skin Neoplasms/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-26
    Description: Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015, and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. We performed next-generation sequencing to generate seven Brazilian ZIKV genomes sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Results of phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, which we estimated to have occurred between May and December 2013, more than 12 months before the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV-endemic areas, as well as with reported outbreaks in the Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however, no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this correlation does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology of this emerging virus in the Americas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faria, Nuno Rodrigues -- Azevedo, Raimunda do Socorro da Silva -- Kraemer, Moritz U G -- Souza, Renato -- Cunha, Mariana Sequetin -- Hill, Sarah C -- Theze, Julien -- Bonsall, Michael B -- Bowden, Thomas A -- Rissanen, Ilona -- Rocco, Iray Maria -- Nogueira, Juliana Silva -- Maeda, Adriana Yurika -- Vasami, Fernanda Giseli da Silva -- Macedo, Fernando Luiz de Lima -- Suzuki, Akemi -- Rodrigues, Sueli Guerreiro -- Cruz, Ana Cecilia Ribeiro -- Nunes, Bruno Tardeli -- Medeiros, Daniele Barbosa de Almeida -- Rodrigues, Daniela Sueli Guerreiro -- Nunes Queiroz, Alice Louize -- da Silva, Eliana Vieira Pinto -- Henriques, Daniele Freitas -- Travassos da Rosa, Elisabeth Salbe -- de Oliveira, Consuelo Silva -- Martins, Livia Caricio -- Vasconcelos, Helena Baldez -- Casseb, Livia Medeiros Neves -- Simith, Darlene de Brito -- Messina, Jane P -- Abade, Leandro -- Lourenco, Jose -- Carlos Junior Alcantara, Luiz -- de Lima, Maricelia Maia -- Giovanetti, Marta -- Hay, Simon I -- de Oliveira, Rodrigo Santos -- Lemos, Poliana da Silva -- de Oliveira, Layanna Freitas -- de Lima, Clayton Pereira Silva -- da Silva, Sandro Patroca -- de Vasconcelos, Janaina Mota -- Franco, Luciano -- Cardoso, Jedson Ferreira -- Vianez-Junior, Joao Lidio da Silva Goncalves -- Mir, Daiana -- Bello, Gonzalo -- Delatorre, Edson -- Khan, Kamran -- Creatore, Marisa -- Coelho, Giovanini Evelim -- de Oliveira, Wanderson Kleber -- Tesh, Robert -- Pybus, Oliver G -- Nunes, Marcio R T -- Vasconcelos, Pedro F C -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095066/Wellcome Trust/United Kingdom -- 102427/Wellcome Trust/United Kingdom -- MR/L009528/1/Medical Research Council/United Kingdom -- R24 AT 120942/AT/NCCIH NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):345-9. doi: 10.1126/science.aaf5036. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para State, Brazil. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. ; Instituto Adolfo Lutz, University of Sao Paulo, Sao Paulo, Brazil. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. Metabiota, San Francisco, CA 94104, USA. ; Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil. ; Centre of Post Graduation in Collective Health, Department of Health, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil. ; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121, USA. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ; Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. ; Laboratorio de AIDS and Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil. ; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada. Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada. ; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada. ; Brazilian Ministry of Health, Brasilia, Brazil. ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA. ; Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. Metabiota, San Francisco, CA 94104, USA. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br. ; Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil. Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br. ; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Para State, Brazil. oliver.pybus@zoo.ox.ac.uk marcionunesbrasil@yahoo.com.br pedrovasconcelos@iec.pa.gov.br.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013429" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/virology ; Americas/epidemiology ; Animals ; *Disease Outbreaks ; Female ; Genome, Viral/genetics ; Humans ; Incidence ; Insect Vectors/virology ; Microcephaly/*epidemiology/virology ; Molecular Epidemiology ; Molecular Sequence Data ; Mutation ; Pacific Islands/epidemiology ; Phylogeny ; Pregnancy ; RNA, Viral/genetics ; Sequence Analysis, RNA ; Travel ; Zika Virus/classification/*genetics/isolation & purification ; Zika Virus Infection/*epidemiology/transmission/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-04-16
    Description: Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, Christopher D -- Siregar, Josephine E -- Mollard, Vanessa -- Vega-Rodriguez, Joel -- Syafruddin, Din -- Matsuoka, Hiroyuki -- Matsuzaki, Motomichi -- Toyama, Tomoko -- Sturm, Angelika -- Cozijnsen, Anton -- Jacobs-Lorena, Marcelo -- Kita, Kiyoshi -- Marzuki, Sangkot -- McFadden, Geoffrey I -- AI031478/AI/NIAID NIH HHS/ -- RR00052/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):349-53. doi: 10.1126/science.aad9279.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. gim@unimelb.edu.au deang@unimelb.edu.au. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. ; Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Parasitology, Faculty of Medicine, Hasanuddin University, Jalan Perintis Kemerdekaan Km10, Makassar 90245, Indonesia. ; Division of Medical Zoology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/*parasitology ; Antimalarials/*pharmacology/therapeutic use ; Atovaquone/*pharmacology/therapeutic use ; Cell Line ; Cytochromes b/*genetics ; Drug Resistance/*genetics ; Genes, Mitochondrial/genetics ; Humans ; Life Cycle Stages/drug effects/genetics ; Malaria/drug therapy/*parasitology/transmission ; Male ; Mice ; Mitochondria/*genetics ; Mutation ; Plasmodium berghei/*drug effects/genetics/growth & development ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):214-5. doi: 10.1126/science.351.6270.214. Epub 2016 Jan 14.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816357" target="_blank"〉PubMed〈/a〉
    Keywords: Anatomy, Comparative ; Animals ; *Biological Evolution ; Colubridae/anatomy & histology/physiology ; *Copulation ; Female ; Genitalia, Female/*anatomy & histology/*physiology ; Male
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ball, Steven G -- Bhattacharya, Debashish -- Weber, Andreas P M -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):659-60. doi: 10.1126/science.aad8864.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite de Lille CNRS, UMR 8576-UGSF-Unite de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France. ; Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA. debash.bhattacharya@gmail.com. ; Institute for Plant Biochemistry, Center of Excellence on Plant Sciences, Heinrich-Heine-University, Universitatsstrasse 1, D-40225 Dusseldorf, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912842" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaproteobacteria/*genetics/pathogenicity ; Animals ; Archaea/metabolism ; *Biological Evolution ; Endocytosis ; Energy Metabolism/genetics ; Eukaryota/genetics ; *Host-Pathogen Interactions ; Humans ; Mitochondria/*genetics ; Plastids/*genetics ; Rickettsia/genetics/pathogenicity ; Symbiosis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-03-05
    Description: Oncogenes are activated through well-known chromosomal alterations such as gene fusion, translocation, and focal amplification. In light of recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods, we investigated whether proto-oncogenes occur within these structures and whether oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T cell acute lymphoblastic leukemia (T-ALL) and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in nonmalignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hnisz, Denes -- Weintraub, Abraham S -- Day, Daniel S -- Valton, Anne-Laure -- Bak, Rasmus O -- Li, Charles H -- Goldmann, Johanna -- Lajoie, Bryan R -- Fan, Zi Peng -- Sigova, Alla A -- Reddy, Jessica -- Borges-Rivera, Diego -- Lee, Tong Ihn -- Jaenisch, Rudolf -- Porteus, Matthew H -- Dekker, Job -- Young, Richard A -- AI120766/AI/NIAID NIH HHS/ -- CA109901/CA/NCI NIH HHS/ -- HG002668/HG/NHGRI NIH HHS/ -- MH104610/MH/NIMH NIH HHS/ -- NS088538/NS/NINDS NIH HHS/ -- R01 GM 112720/GM/NIGMS NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 MH104610/MH/NIMH NIH HHS/ -- U01 DA 040588/DA/NIDA NIH HHS/ -- U01 HG007910/HG/NHGRI NIH HHS/ -- U01 R01 AI 117839/AI/NIAID NIH HHS/ -- U54 CA193419/CA/NCI NIH HHS/ -- U54 DK107980/DK/NIDDK NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1454-8. doi: 10.1126/science.aad9024. Epub 2016 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. ; Department of Pediatrics, Stanford University, Stanford, CA, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA. Howard Hughes Medical Institute. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26940867" target="_blank"〉PubMed〈/a〉
    Keywords: *Chromosome Aberrations ; Chromosome Mapping ; *Gene Expression Regulation, Leukemic ; HEK293 Cells ; Humans ; Mutation ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*genetics ; Proto-Oncogenes/*genetics ; *Sequence Deletion ; Transcriptional Activation ; *Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-03-26
    Description: Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrera, Luis A -- Vedenko, Anastasia -- Kurland, Jesse V -- Rogers, Julia M -- Gisselbrecht, Stephen S -- Rossin, Elizabeth J -- Woodard, Jaie -- Mariani, Luca -- Kock, Kian Hong -- Inukai, Sachi -- Siggers, Trevor -- Shokri, Leila -- Gordan, Raluca -- Sahni, Nidhi -- Cotsapas, Chris -- Hao, Tong -- Yi, Song -- Kellis, Manolis -- Daly, Mark J -- Vidal, Marc -- Hill, David E -- Bulyk, Martha L -- P50 HG004233/HG/NHGRI NIH HHS/ -- R01 HG003985/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1450-4. doi: 10.1126/science.aad2257. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. ; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Center for Human Genetics Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013732" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Exome/genetics ; *Gene Expression Regulation ; Genetic Diseases, Inborn/*genetics ; Genetic Variation ; Genome, Human ; Humans ; Mutation ; Polymorphism, Single Nucleotide ; Protein Array Analysis ; Protein Binding ; Sequence Analysis, DNA ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-01-02
    Description: Antibiotic treatment has two conflicting effects: the desired, immediate effect of inhibiting bacterial growth and the undesired, long-term effect of promoting the evolution of resistance. Although these contrasting outcomes seem inextricably linked, recent work has revealed several ways by which antibiotics can be combined to inhibit bacterial growth while, counterintuitively, selecting against resistant mutants. Decoupling treatment efficacy from the risk of resistance can be achieved by exploiting specific interactions between drugs, and the ways in which resistance mutations to a given drug can modulate these interactions or increase the sensitivity of the bacteria to other compounds. Although their practical application requires much further development and validation, and relies on advances in genomic diagnostics, these discoveries suggest novel paradigms that may restrict or even reverse the evolution of resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baym, Michael -- Stone, Laura K -- Kishony, Roy -- R01-GM081617/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):aad3292. doi: 10.1126/science.aad3292.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA, USA. ; Department of Systems Biology, Harvard Medical School, Boston, MA, USA. Department of Biology and Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel. rkishony@technion.ac.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26722002" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*pharmacology ; Bacteria/*drug effects/*genetics ; Drug Resistance, Bacterial/*genetics ; *Evolution, Molecular ; Humans ; Mutation ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hulme, Philip E -- Le Roux, Johannes J -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):422. doi: 10.1126/science.352.6284.422-b. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand. philip.hulme@lincoln.ac.nz. ; The Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand. Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conservation of Natural Resources/*methods ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-03-26
    Description: Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naive B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naive B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph G -- Kulp, Daniel W -- Havenar-Daughton, Colin -- Sarkar, Anita -- Briney, Bryan -- Sok, Devin -- Sesterhenn, Fabian -- Ereno-Orbea, June -- Kalyuzhniy, Oleksandr -- Deresa, Isaiah -- Hu, Xiaozhen -- Spencer, Skye -- Jones, Meaghan -- Georgeson, Erik -- Adachi, Yumiko -- Kubitz, Michael -- deCamp, Allan C -- Julien, Jean-Philippe -- Wilson, Ian A -- Burton, Dennis R -- Crotty, Shane -- Schief, William R -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI110657/AI/NIAID NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1458-63. doi: 10.1126/science.aad9195.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Vaccine and Infectious Disease Division, Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. schief@scripps.edu shane@lji.org. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. schief@scripps.edu shane@lji.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013733" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/*immunology/isolation & purification ; Antibodies, Neutralizing/chemistry/*immunology/isolation & purification ; Antibody Affinity ; B-Lymphocytes/immunology ; Cell Separation ; Combinatorial Chemistry Techniques ; Epitopes, B-Lymphocyte/chemistry/genetics/*immunology ; Germ Cells/*immunology ; HIV Antibodies/chemistry/*immunology/isolation & purification ; HIV-1/*immunology ; Humans ; Molecular Sequence Data ; Mutation ; Peptide Library ; Precursor Cells, B-Lymphoid/*immunology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-01-09
    Description: The lung is constantly exposed to environmental atmospheric cues. How it senses and responds to these cues is poorly defined. Here, we show that Roundabout receptor (Robo) genes are expressed in pulmonary neuroendocrine cells (PNECs), a rare, innervated epithelial population. Robo inactivation in mouse lung results in an inability of PNECs to cluster into sensory organoids and triggers increased neuropeptide production upon exposure to air. Excess neuropeptides lead to an increase in immune infiltrates, which in turn remodel the matrix and irreversibly simplify the alveoli. We demonstrate in vivo that PNECs act as precise airway sensors that elicit immune responses via neuropeptides. These findings suggest that the PNEC and neuropeptide abnormalities documented in a wide array of pulmonary diseases may profoundly affect symptoms and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Branchfield, Kelsey -- Nantie, Leah -- Verheyden, Jamie M -- Sui, Pengfei -- Wienhold, Mark D -- Sun, Xin -- 5T32AI007635/AI/NIAID NIH HHS/ -- HL097134/HL/NHLBI NIH HHS/ -- HL122406/HL/NHLBI NIH HHS/ -- R01 HL113870/HL/NHLBI NIH HHS/ -- T32 GM007133/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):707-10. doi: 10.1126/science.aad7969. Epub 2016 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA. ; Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA. ; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA. xsun@wisc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26743624" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Clodronic Acid/pharmacology ; Lung/cytology/*immunology ; Lung Diseases/genetics/immunology ; Macrophages/drug effects/immunology ; Mice ; Mice, Mutant Strains ; Mutation ; Nerve Tissue Proteins/genetics/*physiology ; Neuroendocrine Cells/*immunology/metabolism ; Neuropeptides/*biosynthesis ; Receptors, Immunologic/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, Leslie -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):403. doi: 10.1126/science.352.6284.403. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102460" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/pharmacology/*therapeutic use ; Artemisinins/pharmacology/*therapeutic use ; Drug Resistance/*genetics ; Humans ; Malaria, Falciparum/*drug therapy/epidemiology/*parasitology ; Mutation ; Myanmar/epidemiology ; Plasmodium falciparum/*drug effects/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-01-30
    Description: The "cancerized field" concept posits that cancer-prone cells in a given tissue share an oncogenic mutation, but only discreet clones within the field initiate tumors. Most benign nevi carry oncogenic BRAF(V600E) mutations but rarely become melanoma. The zebrafish crestin gene is expressed embryonically in neural crest progenitors (NCPs) and specifically reexpressed in melanoma. Live imaging of transgenic zebrafish crestin reporters shows that within a cancerized field (BRAF(V600E)-mutant; p53-deficient), a single melanocyte reactivates the NCP state, revealing a fate change at melanoma initiation in this model. NCP transcription factors, including sox10, regulate crestin expression. Forced sox10 overexpression in melanocytes accelerated melanoma formation, which is consistent with activation of NCP genes and super-enhancers leading to melanoma. Our work highlights NCP state reemergence as a key event in melanoma initiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaufman, Charles K -- Mosimann, Christian -- Fan, Zi Peng -- Yang, Song -- Thomas, Andrew J -- Ablain, Julien -- Tan, Justin L -- Fogley, Rachel D -- van Rooijen, Ellen -- Hagedorn, Elliott J -- Ciarlo, Christie -- White, Richard M -- Matos, Dominick A -- Puller, Ann-Christin -- Santoriello, Cristina -- Liao, Eric C -- Young, Richard A -- Zon, Leonard I -- HG002668/HG/NHGRI NIH HHS/ -- K08 AR061071/AR/NIAMS NIH HHS/ -- R01 CA103846/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):aad2197. doi: 10.1126/science.aad2197. Epub 2016 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02115, USA. ; Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. ; Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10075, USA. ; Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. ; Research Institute Children's Cancer Center Hamburg and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. ; Harvard Stem Cell Institute, Boston, MA 02115, USA. Harvard Medical School, Boston, MA 02115, USA. Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. ; Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA. Harvard Stem Cell Institute, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02115, USA. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. zon@enders.tch.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823433" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Carcinogenesis/*genetics ; Embryonic Stem Cells/metabolism ; Enhancer Elements, Genetic ; *Gene Expression Regulation, Developmental ; *Gene Expression Regulation, Neoplastic ; Genes, Reporter ; Green Fluorescent Proteins/genetics ; Melanocytes/metabolism ; Melanoma/*genetics ; Melanoma, Experimental/*genetics ; Mutation ; Nerve Tissue Proteins/genetics ; Neural Crest/*metabolism ; Proto-Oncogene Proteins B-raf/genetics ; SOXE Transcription Factors/genetics ; Skin Neoplasms/*genetics ; Tumor Suppressor Protein p53/genetics ; *Zebrafish ; Zebrafish Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-03-12
    Description: Type IVa pili are filamentous cell surface structures observed in many bacteria. They pull cells forward by extending, adhering to surfaces, and then retracting. We used cryo-electron tomography of intact Myxococcus xanthus cells to visualize type IVa pili and the protein machine that assembles and retracts them (the type IVa pilus machine, or T4PM) in situ, in both the piliated and nonpiliated states, at a resolution of 3 to 4 nanometers. We found that T4PM comprises an outer membrane pore, four interconnected ring structures in the periplasm and cytoplasm, a cytoplasmic disc and dome, and a periplasmic stem. By systematically imaging mutants lacking defined T4PM proteins or with individual proteins fused to tags, we mapped the locations of all 10 T4PM core components and the minor pilins, thereby providing insights into pilus assembly, structure, and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yi-Wei -- Rettberg, Lee A -- Treuner-Lange, Anke -- Iwasa, Janet -- Sogaard-Andersen, Lotte -- Jensen, Grant J -- R01 GM094800B/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):aad2001. doi: 10.1126/science.aad2001. Epub 2016 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, Pasadena, CA 91125, USA. Howard Hughes Medical Institute, Pasadena, CA 91125, USA. ; Howard Hughes Medical Institute, Pasadena, CA 91125, USA. ; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany. ; University of Utah, Salt Lake City, UT 84112, USA. ; California Institute of Technology, Pasadena, CA 91125, USA. Howard Hughes Medical Institute, Pasadena, CA 91125, USA. jensen@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965631" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Adhesion ; Cryoelectron Microscopy ; Fimbriae, Bacterial/genetics/*ultrastructure ; Microscopy, Electron, Transmission ; Models, Molecular ; Mutation ; Myxococcus xanthus/genetics/physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarrazin, Francois -- Lecomte, Jane -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):422-3. doi: 10.1126/science.352.6284.422-c. Epub 2016 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sorbonne Universites, UPMC Univ. Paris 06, Museum National d'Histoire Naturelle, CNRS, CESCO, UMR 7204, 75005 Paris, France. sarrazin@mnhn.fr. ; Ecologie Systematique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Universite Paris-Saclay, 91400 Orsay, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Conservation of Natural Resources/*methods ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-02-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dantzer, Ben -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):822-3. doi: 10.1126/science.aaa6480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. dantzer@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700499" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Competitive Behavior ; *Ecosystem ; Female ; Male ; *Maternal Behavior ; Songbirds/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-04-04
    Description: Plant immunity against foreign gene invasion takes advantage of posttranscriptional gene silencing (PTGS). How plants elaborately avert inappropriate PTGS of endogenous coding genes remains unclear. We demonstrate in Arabidopsis that both 5'-3' and 3'-5' cytoplasmic RNA decay pathways act as repressors of transgene and endogenous PTGS. Disruption of bidirectional cytoplasmic RNA decay leads to pleiotropic developmental defects and drastic transcriptomic alterations, which are substantially rescued by PTGS mutants. Upon dysfunction of bidirectional RNA decay, a large number of 21- to 22-nucleotide endogenous small interfering RNAs are produced from coding transcripts, including multiple microRNA targets, which could interfere with their cognate gene expression and functions. This study highlights the risk of unwanted PTGS and identifies cytoplasmic RNA decay pathways as safeguards of plant transcriptome and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xinyan -- Zhu, Ying -- Liu, Xiaodan -- Hong, Xinyu -- Xu, Yang -- Zhu, Ping -- Shen, Yang -- Wu, Huihui -- Ji, Yusi -- Wen, Xing -- Zhang, Chen -- Zhao, Qiong -- Wang, Yichuan -- Lu, Jian -- Guo, Hongwei -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):120-3. doi: 10.1126/science.aaa2618.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. ; Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China. ; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. ; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. ; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. hongweig@pku.edu.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838384" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/physiology ; Cytoplasm/*metabolism ; *Gene Expression Regulation, Plant ; Metabolic Networks and Pathways ; MicroRNAs/genetics/metabolism ; Mutation ; Plant Immunity/*genetics ; *RNA Interference ; RNA Replicase/genetics/physiology ; *RNA Stability ; RNA, Plant/*genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; *Suppression, Genetic ; Transcriptome ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-10-17
    Description: Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase beta adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blomen, Vincent A -- Majek, Peter -- Jae, Lucas T -- Bigenzahn, Johannes W -- Nieuwenhuis, Joppe -- Staring, Jacqueline -- Sacco, Roberto -- van Diemen, Ferdy R -- Olk, Nadine -- Stukalov, Alexey -- Marceau, Caleb -- Janssen, Hans -- Carette, Jan E -- Bennett, Keiryn L -- Colinge, Jacques -- Superti-Furga, Giulio -- Brummelkamp, Thijn R -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1092-6. doi: 10.1126/science.aac7557. Epub 2015 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. ; Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA. ; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. University of Montpellier, Institut de Recherche en Cancerologie de Montpellier Inserm U1194, Institut regional du Cancer Montpellier, 34000 Montpellier, France. jacques.colinge@inserm.fr gsuperti@cemm.at t.brummelkamp@nki.nl. ; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria. jacques.colinge@inserm.fr gsuperti@cemm.at t.brummelkamp@nki.nl. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066CX, Amsterdam, Netherlands. jacques.colinge@inserm.fr gsuperti@cemm.at t.brummelkamp@nki.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472760" target="_blank"〉PubMed〈/a〉
    Keywords: *Gene Regulatory Networks ; *Genes, Essential ; *Genes, Lethal ; Genetic Fitness/*genetics ; Golgi Apparatus/genetics ; *Haploidy ; Hexosyltransferases/genetics ; Humans ; Membrane Proteins/genetics ; Mutagenesis, Insertional ; Mutation ; Saccharomyces cerevisiae/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-03-15
    Description: Immune checkpoint inhibitors, which unleash a patient's own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non-small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti-PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti-PD-1 therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizvi, Naiyer A -- Hellmann, Matthew D -- Snyder, Alexandra -- Kvistborg, Pia -- Makarov, Vladimir -- Havel, Jonathan J -- Lee, William -- Yuan, Jianda -- Wong, Phillip -- Ho, Teresa S -- Miller, Martin L -- Rekhtman, Natasha -- Moreira, Andre L -- Ibrahim, Fawzia -- Bruggeman, Cameron -- Gasmi, Billel -- Zappasodi, Roberta -- Maeda, Yuka -- Sander, Chris -- Garon, Edward B -- Merghoub, Taha -- Wolchok, Jedd D -- Schumacher, Ton N -- Chan, Timothy A -- K23 CA149079/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):124-8. doi: 10.1126/science.aaa1348. Epub 2015 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. chant@mskcc.org. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Immune Monitoring Core, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Computation Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Mathematics, Columbia University, New York, NY, 10027, USA. ; Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; David Geffen School of Medicine at UCLA, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY, 10065, USA. Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Weill Cornell Medical College, New York, NY, 10065, USA. Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. chant@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25765070" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal, Humanized/*therapeutic use ; Antineoplastic Agents/*therapeutic use ; CD8-Positive T-Lymphocytes/immunology ; Carcinoma, Non-Small-Cell Lung/*drug therapy/*genetics/immunology ; Cohort Studies ; DNA Repair/genetics ; Disease-Free Survival ; Drug Resistance, Neoplasm/*genetics ; Humans ; Lung Neoplasms/*drug therapy/*genetics/immunology ; Mutation ; Programmed Cell Death 1 Receptor/*antagonists & inhibitors ; Smoking/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-09-12
    Description: The function of neural circuits depends on the generation of specific classes of neurons. Neural identity is typically established near the time when neurons exit the cell cycle to become postmitotic cells, and it is generally accepted that, once the identity of a neuron has been established, its fate is maintained throughout life. Here, we show that network activity dynamically modulates the properties of fast-spiking (FS) interneurons through the postmitotic expression of the transcriptional regulator Er81. In the adult cortex, Er81 protein levels define a spectrum of FS basket cells with different properties, whose relative proportions are, however, continuously adjusted in response to neuronal activity. Our findings therefore suggest that interneuron properties are malleable in the adult cortex, at least to a certain extent.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702376/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702376/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehorter, Nathalie -- Ciceri, Gabriele -- Bartolini, Giorgia -- Lim, Lynette -- del Pino, Isabel -- Marin, Oscar -- 103714MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Sep 11;349(6253):1216-20. doi: 10.1126/science.aab3415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Centre for Developmental Neurobiology, Medical Research Council, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK. Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain. ; Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain. ; MRC Centre for Developmental Neurobiology, Medical Research Council, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK. Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain. oscar.marin@kcl.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26359400" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/cytology/metabolism/*physiology ; DNA-Binding Proteins/genetics/*metabolism ; Interneurons/cytology/metabolism/*physiology ; Mice ; Mice, Mutant Strains ; Mitosis ; Mutation ; Nerve Net/cytology/metabolism/*physiology ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mervis, Jeffrey -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1054. doi: 10.1126/science.347.6226.1054.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745139" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Biology/*education ; Curriculum ; *Faculty ; Knowledge ; *Professional Competence ; *Religion and Science ; Role ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-02-28
    Description: A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homolog of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and toward its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, Tiffany B -- Mulley, Geraldine -- Dills, Alexander H -- Alsohim, Abdullah S -- McGuffin, Liam J -- Studholme, David J -- Silby, Mark W -- Brockhurst, Michael A -- Johnson, Louise J -- Jackson, Robert W -- BB/J015350/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/K003240/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT097835MF/Wellcome Trust/United Kingdom -- WT101650MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1014-7. doi: 10.1126/science.1259145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. ; Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. Department of Plant Production and Protection, Qassim University, Qassim, P.O. Box 6622, Saudi Arabia. ; College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK. ; Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. l.j.johnson@reading.ac.uk. ; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. The University of Akureyri, Borgir vid Nordurslod, IS-600 Akureyri, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722415" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/*physiology ; *Biological Evolution ; Flagella/genetics/metabolism/*physiology ; Gene Deletion ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Nitrogen/*metabolism ; Pseudomonas fluorescens/genetics/metabolism/*physiology ; Regulon ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bohannon, John -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1300. doi: 10.1126/science.347.6228.1300.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25792310" target="_blank"〉PubMed〈/a〉
    Keywords: Albinism/genetics ; Animals ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Culicidae/genetics ; Drosophila melanogaster/*genetics ; Gene Targeting/*methods ; *Gene Transfer Techniques ; Gene Transfer, Horizontal ; *Genes, Recessive ; *Genes, X-Linked ; Humans ; Malaria/prevention & control ; Mutagenesis ; Mutation ; Pigmentation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-03-06
    Description: Sedimentary basins in eastern Africa preserve a record of continental rifting and contain important fossil assemblages for interpreting hominin evolution. However, the record of hominin evolution between 3 and 2.5 million years ago (Ma) is poorly documented in surface outcrops, particularly in Afar, Ethiopia. Here we present the discovery of a 2.84- to 2.58-million-year-old fossil and hominin-bearing sediments in the Ledi-Geraru research area of Afar, Ethiopia, that have produced the earliest record of the genus Homo. Vertebrate fossils record a faunal turnover indicative of more open and probably arid habitats than those reconstructed earlier in this region, which is in broad agreement with hypotheses addressing the role of environmental forcing in hominin evolution at this time. Geological analyses constrain depositional and structural models of Afar and date the LD 350-1 Homo mandible to 2.80 to 2.75 Ma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DiMaggio, Erin N -- Campisano, Christopher J -- Rowan, John -- Dupont-Nivet, Guillaume -- Deino, Alan L -- Bibi, Faysal -- Lewis, Margaret E -- Souron, Antoine -- Garello, Dominique -- Werdelin, Lars -- Reed, Kaye E -- Arrowsmith, J Ramon -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1355-9. doi: 10.1126/science.aaa1415. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. dimaggio@psu.edu kreed@asu.edu. ; Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. ; CNRS Geosciences Rennes, Campus de Beaulieu, 35042 Rennes, France. ; Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA. ; Museum fur Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany. ; Biology Program, Stockton University, 101 Vera King Farris Drive, Galloway, NJ 08205, USA. ; Human Evolution Research Center, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. ; Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, SE-10405 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739409" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Ecosystem ; Ethiopia ; Fossils ; *Geologic Sediments ; *Hominidae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-04-04
    Description: Adoptive cell therapy (ACT) is a highly personalized cancer therapy that involves administration to the cancer-bearing host of immune cells with direct anticancer activity. ACT using naturally occurring tumor-reactive lymphocytes has mediated durable, complete regressions in patients with melanoma, probably by targeting somatic mutations exclusive to each cancer. These results have expanded the reach of ACT to the treatment of common epithelial cancers. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenberg, Steven A -- Restifo, Nicholas P -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):62-8. doi: 10.1126/science.aaa4967.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Surgery Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, 9000 Rockville Pike, CRC Building, Room 3W-3940, Bethesda, MD 20892, USA. sar@nih.gov restifo@nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838374" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Neoplasm/immunology ; Genetic Engineering ; Humans ; Immunotherapy, Adoptive/*methods ; Lymphocyte Depletion ; Melanoma/genetics/secondary/therapy ; Mutation ; Neoplasms/genetics/immunology/*therapy ; Precision Medicine/*methods ; Skin Neoplasms/genetics/pathology/therapy ; T-Lymphocytes/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-01-03
    Description: Some tissue types give rise to human cancers millions of times more often than other tissue types. Although this has been recognized for more than a century, it has never been explained. Here, we show that the lifetime risk of cancers of many different types is strongly correlated (0.81) with the total number of divisions of the normal self-renewing cells maintaining that tissue's homeostasis. These results suggest that only a third of the variation in cancer risk among tissues is attributable to environmental factors or inherited predispositions. The majority is due to "bad luck," that is, random mutations arising during DNA replication in normal, noncancerous stem cells. This is important not only for understanding the disease but also for designing strategies to limit the mortality it causes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomasetti, Cristian -- Vogelstein, Bert -- P30 CA006973/CA/NCI NIH HHS/ -- P30-CA006973/CA/NCI NIH HHS/ -- P50-CA62924/CA/NCI NIH HHS/ -- R01-CA57345/CA/NCI NIH HHS/ -- R37 CA043460/CA/NCI NIH HHS/ -- R37-CA43460/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):78-81. doi: 10.1126/science.1260825.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 550 North Broadway, Baltimore, MD 21205, USA. ctomasetti@jhu.edu vogelbe@jhmi.edu. ; Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street, Baltimore, MD 21205, USA. ctomasetti@jhu.edu vogelbe@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554788" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division/*genetics ; Gene-Environment Interaction ; Genetic Variation ; Humans ; Mutation ; Neoplasms/classification/*epidemiology/*genetics ; Risk ; Stem Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-11-01
    Description: It is unknown whether the human immune system frequently mounts a T cell response against mutations expressed by common epithelial cancers. Using a next-generation sequencing approach combined with high-throughput immunologic screening, we demonstrated that tumor-infiltrating lymphocytes (TILs) from 9 out of 10 patients with metastatic gastrointestinal cancers contained CD4(+) and/or CD8(+) T cells that recognized one to three neo-epitopes derived from somatic mutations expressed by the patient's own tumor. There were no immunogenic epitopes shared between these patients. However, we identified in one patient a human leukocyte antigen-C*08:02-restricted T cell receptor from CD8(+) TILs that targeted the KRAS(G12D) hotspot driver mutation found in many human cancers. Thus, a high frequency of patients with common gastrointestinal cancers harbor immunogenic mutations that can potentially be exploited for the development of highly personalized immunotherapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Eric -- Ahmadzadeh, Mojgan -- Lu, Yong-Chen -- Gros, Alena -- Turcotte, Simon -- Robbins, Paul F -- Gartner, Jared J -- Zheng, Zhili -- Li, Yong F -- Ray, Satyajit -- Wunderlich, John R -- Somerville, Robert P -- Rosenberg, Steven A -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1387-90. doi: 10.1126/science.aad1253. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. sar@mail.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516200" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; CD8-Positive T-Lymphocytes/immunology ; Cell Line, Tumor ; Female ; Gastrointestinal Neoplasms/*genetics/*immunology/therapy ; HLA-C Antigens/genetics/immunology ; Humans ; Immunodominant Epitopes/genetics/immunology ; Immunotherapy/methods ; Lymphocytes, Tumor-Infiltrating/immunology ; Male ; Middle Aged ; Mutation ; Precision Medicine/methods ; Proto-Oncogene Proteins/genetics/immunology ; Receptors, Antigen, T-Cell/immunology ; ras Proteins/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-11-21
    Description: The nonrandom distribution of meiotic recombination shapes heredity and genetic diversification. Theoretically, hotspots--favored sites of recombination initiation--either evolve rapidly toward extinction or are conserved, especially if they are chromosomal features under selective constraint, such as promoters. We tested these theories by comparing genome-wide recombination initiation maps from widely divergent Saccharomyces species. We find that hotspots frequently overlap with promoters in the species tested, and consequently, hotspot positions are well conserved. Remarkably, the relative strength of individual hotspots is also highly conserved, as are larger-scale features of the distribution of recombination initiation. This stability, not predicted by prior models, suggests that the particular shape of the yeast recombination landscape is adaptive and helps in understanding evolutionary dynamics of recombination in other species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656144/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4656144/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Isabel -- Keeney, Scott -- F31 GM097861/GM/NIGMS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM058673/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):932-7. doi: 10.1126/science.aad0814.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ; Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. s-keeney@ski.mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586758" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Chromosomes, Fungal/genetics ; *DNA Breaks, Double-Stranded ; Genome, Fungal/genetics ; *Homologous Recombination ; Meiosis/*genetics ; Phylogeny ; Saccharomyces cerevisiae/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-11-07
    Description: Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy). CmACS11 represses the expression of the male promoting gene CmWIP1 to control the development and the coexistence of male and female flowers in monoecious species. Because monoecy can lead to dioecy, we show how a combination of alleles of CmACS11 and CmWIP1 can create artificial dioecy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boualem, Adnane -- Troadec, Christelle -- Camps, Celine -- Lemhemdi, Afef -- Morin, Halima -- Sari, Marie-Agnes -- Fraenkel-Zagouri, Rina -- Kovalski, Irina -- Dogimont, Catherine -- Perl-Treves, Rafael -- Bendahmane, Abdelhafid -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):688-91. doi: 10.1126/science.aac8370.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay, CNRS, Universite Paris-Sud, Universite d'Evry, Universite Paris-Diderot, Batiment 630, 91405, Orsay, France. ; Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Universite Rene Descartes, Paris, France. ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; INRA, UR 1052, Unite de Genetique et d'Amelioration des Fruits et Legumes, BP 94, F-84143 Montfavet, France. ; Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay, CNRS, Universite Paris-Sud, Universite d'Evry, Universite Paris-Diderot, Batiment 630, 91405, Orsay, France. bendahm@evry.inra.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542573" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; *Biological Evolution ; Cucumis sativus/enzymology/genetics/growth & development ; Cucurbitaceae/enzymology/genetics/*growth & development ; Ethylenes/biosynthesis ; Flowers/enzymology/genetics/*growth & development ; Genes, Plant/genetics/physiology ; Lyases/genetics/*physiology ; Molecular Sequence Data ; Phloem/enzymology/genetics/growth & development ; Plant Proteins/genetics/*physiology ; Sex Determination Processes/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-02-24
    Description: An important question in ecology is how mechanistic processes occurring among individuals drive large-scale patterns of community formation and change. Here we show that in two species of bluebirds, cycles of replacement of one by the other emerge as an indirect consequence of maternal influence on offspring behavior in response to local resource availability. Sampling across broad temporal and spatial scales, we found that western bluebirds, the more competitive species, bias the birth order of offspring by sex in a way that influences offspring aggression and dispersal, setting the stage for rapid increases in population density that ultimately result in the replacement of their sister species. Our results provide insight into how predictable community dynamics can occur despite the contingency of local behavioral interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duckworth, Renee A -- Belloni, Virginia -- Anderson, Samantha R -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):875-7. doi: 10.1126/science.1260154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. rad3@email.arizona.edu. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA. Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA. ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700519" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/analysis ; Animals ; *Biological Evolution ; Clutch Size ; *Competitive Behavior ; *Ecosystem ; Egg Yolk/chemistry ; Female ; Fires ; Male ; *Maternal Behavior ; Population Density ; Songbirds/*physiology ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-06-20
    Description: Villmoare et al. (Reports, 20 March 2015, p. 1352) report on a hominin mandible from the Ledi-Geraru research area, Ethiopia, which they claim to be the earliest known representative of the genus Homo. However, certain measurements and observations for Australopithecus sediba mandibles presented are incorrect or are not included in critical aspects of the study. When correctly used, these data demonstrate that specimen LD 350-1 cannot be unequivocally assigned to the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawks, John -- de Ruiter, Darryl J -- Berger, Lee R -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1326. doi: 10.1126/science.aab0591.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Wisconsin, Madison, WI 53706, USA. Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa. jhawks@wisc.edu. ; Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa. Department of Anthropology, Texas A&M University, College Station, TX 77843, USA. ; Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Hominidae/*anatomy & histology ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-02-24
    Description: Cope's rule proposes that animal lineages evolve toward larger body size over time. To test this hypothesis across all marine animals, we compiled a data set of body sizes for 17,208 genera of marine animals spanning the past 542 million years. Mean biovolume across genera has increased by a factor of 150 since the Cambrian, whereas minimum biovolume has decreased by less than a factor of 10, and maximum biovolume has increased by more than a factor of 100,000. Neutral drift from a small initial value cannot explain this pattern. Instead, most of the size increase reflects differential diversification across classes, indicating that the pattern does not reflect a simple scaling-up of widespread and persistent selection for larger size within populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heim, Noel A -- Knope, Matthew L -- Schaal, Ellen K -- Wang, Steve C -- Payne, Jonathan L -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):867-70. doi: 10.1126/science.1260065.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA. naheim@stanford.edu. ; Department of Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA. ; Department of Mathematics and Statistics, Swarthmore College, Swarthmore, PA 19081, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms ; *Biological Evolution ; *Body Size
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-05-23
    Description: Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex cross-talk between microenvironment, ILCs, and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed in order to regulate or enhance immune responses in disease prevention and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eberl, Gerard -- Colonna, Marco -- Di Santo, James P -- McKenzie, Andrew N J -- 100963/Wellcome Trust/United Kingdom -- 1U01AI095542/AI/NIAID NIH HHS/ -- MC_U105178805/Medical Research Council/United Kingdom -- R01DE021255/DE/NIDCR NIH HHS/ -- R21CA16719/CA/NCI NIH HHS/ -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 May 22;348(6237):aaa6566. doi: 10.1126/science.aaa6566. Epub 2015 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Microenvironment and Immunity Unit, 75724 Paris, France. gerard.eberl@pasteur.fr. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Institut Pasteur, Innate Immunity Unit, INSERM U668, 75724 Paris, France. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999512" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Adipose Tissue/immunology ; *Biological Evolution ; Bone Marrow/immunology ; Cytokines/immunology ; Diet ; Humans ; *Immunity, Innate ; Immunotherapy ; Inflammation/immunology ; Liver/embryology/immunology ; Lymphocyte Activation ; Lymphocytes/*immunology ; Microbiota/immunology ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-10-17
    Description: Research in the genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. Although the exact identity of many of the genes remains to be discovered, genes identified to date encode proteins that play roles in certain conserved pathways: protein synthesis, transcriptional and epigenetic regulation, and synaptic signaling. The next generation of research in neurodevelopmental disorders must address the neural circuitry underlying the behavioral symptoms and comorbidities, the cell types playing critical roles in these circuits, and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we can leverage the heterogeneity of neurodevelopmental disorders into precision medicine will the mechanism-based therapeutics for these disorders start to unlock success.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739545/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739545/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sahin, Mustafa -- Sur, Mriganka -- EF1451125/PHS HHS/ -- EY007023/EY/NEI NIH HHS/ -- MH085802/MH/NIMH NIH HHS/ -- NS090473/NS/NINDS NIH HHS/ -- P20 NS080199/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- U01 NS082320/NS/NINDS NIH HHS/ -- U54 NS092090/NS/NINDS NIH HHS/ -- U54NS092090/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263). pii: aab3897. doi: 10.1126/science.aab3897. Epub 2015 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA. mustafa.sahin@childrens.harvard.edu msur@mit.edu. ; Simons Center for the Social Brain, Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. mustafa.sahin@childrens.harvard.edu msur@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472761" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/drug therapy/genetics ; Behavior ; Brain/growth & development/metabolism ; Chromatin Assembly and Disassembly ; Clinical Trials as Topic ; Epigenesis, Genetic ; Genes ; *Genetic Predisposition to Disease ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neural Pathways/metabolism ; Neurodevelopmental Disorders/*drug therapy/*genetics ; Precision Medicine/*methods ; Protein Biosynthesis/genetics ; Transcription, Genetic ; Translational Medical Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-11-14
    Description: Following the end-Devonian mass extinction (359 million years ago), vertebrates experienced persistent reductions in body size for at least 36 million years. Global shrinkage was not related to oxygen or temperature, which suggests that ecological drivers played a key role in determining the length and direction of size trends. Small, fast-breeding ray-finned fishes, sharks, and tetrapods, most under 1 meter in length from snout to tail, radiated to dominate postextinction ecosystems and vertebrae biodiversity. The few large-bodied, slow-breeding survivors failed to diversify, facing extinction despite earlier evolutionary success. Thus, the recovery interval resembled modern ecological successions in terms of active selection on size and related life histories. Disruption of global vertebrate, and particularly fish, biotas may commonly lead to widespread, long-term reduction in body size, structuring future biodiversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sallan, Lauren -- Galimberti, Andrew K -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):812-5. doi: 10.1126/science.aac7373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA. lsallan@sas.upenn.edu. ; Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; *Body Size ; Extinction, Biological ; Fishes/*anatomy & histology ; Tail/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-04-18
    Description: Human-like modes of communication, including mutual gaze, in dogs may have been acquired during domestication with humans. We show that gazing behavior from dogs, but not wolves, increased urinary oxytocin concentrations in owners, which consequently facilitated owners' affiliation and increased oxytocin concentration in dogs. Further, nasally administered oxytocin increased gazing behavior in dogs, which in turn increased urinary oxytocin concentrations in owners. These findings support the existence of an interspecies oxytocin-mediated positive loop facilitated and modulated by gazing, which may have supported the coevolution of human-dog bonding by engaging common modes of communicating social attachment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagasawa, Miho -- Mitsui, Shouhei -- En, Shiori -- Ohtani, Nobuyo -- Ohta, Mitsuaki -- Sakuma, Yasuo -- Onaka, Tatsushi -- Mogi, Kazutaka -- Kikusui, Takefumi -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):333-6. doi: 10.1126/science.1261022. Epub 2015 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan. ; Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. ; University of Tokyo Health Sciences, Tama, Tokyo, Japan. ; Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan. ; Department of Animal Science and Biotechnology, Azabu University, Sagamihara, Kanagawa, Japan. kikusui@azabu-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883356" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*psychology ; *Biological Evolution ; *Bonding, Human-Pet ; *Communication ; Dogs/*psychology ; Female ; *Fixation, Ocular ; Humans ; Oxytocin/*physiology ; Wolves/*psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-09-12
    Description: Monoclonal antibodies directed against cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of response to these therapies remain incompletely characterized. To investigate the roles of tumor-specific neoantigens and alterations in the tumor microenvironment in the response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor biopsies and matching germline tissue samples from 110 patients. For 40 of these patients, we also obtained and analyzed transcriptome data from the pretreatment tumor samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in the immune microenvironment were significantly associated with clinical benefit. However, no recurrent neoantigen peptide sequences predicted responder patient populations. Thus, detailed integrated molecular characterization of large patient cohorts may be needed to identify robust determinants of response and resistance to immune checkpoint inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Allen, Eliezer M -- Miao, Diana -- Schilling, Bastian -- Shukla, Sachet A -- Blank, Christian -- Zimmer, Lisa -- Sucker, Antje -- Hillen, Uwe -- Foppen, Marnix H Geukes -- Goldinger, Simone M -- Utikal, Jochen -- Hassel, Jessica C -- Weide, Benjamin -- Kaehler, Katharina C -- Loquai, Carmen -- Mohr, Peter -- Gutzmer, Ralf -- Dummer, Reinhard -- Gabriel, Stacey -- Wu, Catherine J -- Schadendorf, Dirk -- Garraway, Levi A -- U54 HG003067/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 9;350(6257):207-11. doi: 10.1126/science.aad0095. Epub 2015 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium(DKTK), 69121 Heidelberg, Germany. ; Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands. ; Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland. ; Skin Cancer Unit, German Cancer Research Center(DKTK), 69121 Heidelberg, Germany. Skin Cancer Unit, German Cancer Research Center(DKTK), 69121 Heidelberg, Germany. Department of Dermatology, Venerology, and Allergology, University Medical Center, Ruprecht-Karls University of Heidelberg, 68167 Mannheim, Germany. ; Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany. ; Department of Dermatology, University Hospital Tubingen, 72076 Tubingen, Germany. ; Department of Dermatology, University Hospital Kiel, 24105 Kiel, Germany. ; Department of Dermatology, University Medical Center, 55131 Mainz, Germany. ; Department of Dermatology, Elbe-Kliniken, 21614 Buxtehude, Germany. ; Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, 30625 Hannover, Germany. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany. German Cancer Consortium(DKTK), 69121 Heidelberg, Germany. levi_garraway@dfci.harvard.edu dirk.schadendorf@uk-essen.de. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. levi_garraway@dfci.harvard.edu dirk.schadendorf@uk-essen.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26359337" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Aged, 80 and over ; Antibodies, Monoclonal/*pharmacology/therapeutic use ; Antigens, Neoplasm/*genetics ; *Biomarkers, Pharmacological ; CTLA-4 Antigen/*antagonists & inhibitors ; Cell Cycle Checkpoints/genetics/immunology ; Cohort Studies ; DNA Mutational Analysis ; Drug Resistance, Neoplasm/genetics ; Exome ; Female ; Genomics ; HLA Antigens/genetics ; Humans ; Male ; Melanoma/*drug therapy/*genetics/secondary ; Middle Aged ; Mutation ; Skin Neoplasms/*drug therapy/*genetics/pathology ; Tumor Microenvironment/drug effects/immunology ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Evans, Susan -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):374-5. doi: 10.1126/science.aac5672. Epub 2015 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University College London, London, UK. s.e.evans@ucl.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206915" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Extremities/*anatomy & histology ; Lizards/*anatomy & histology ; Snakes/*anatomy & histology/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-04-04
    Description: T cell immunity directed against tumor-encoded amino acid substitutions occurs in some melanoma patients. This implicates missense mutations as a source of patient-specific neoantigens. However, a systematic evaluation of these putative neoantigens as targets of antitumor immunity is lacking. Moreover, it remains unknown whether vaccination can augment such responses. We found that a dendritic cell vaccine led to an increase in naturally occurring neoantigen-specific immunity and revealed previously undetected human leukocyte antigen (HLA) class I-restricted neoantigens in patients with advanced melanoma. The presentation of neoantigens by HLA-A*02:01 in human melanoma was confirmed by mass spectrometry. Vaccination promoted a diverse neoantigen-specific T cell receptor (TCR) repertoire in terms of both TCR-beta usage and clonal composition. Our results demonstrate that vaccination directed at tumor-encoded amino acid substitutions broadens the antigenic breadth and clonal diversity of antitumor immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549796/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549796/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carreno, Beatriz M -- Magrini, Vincent -- Becker-Hapak, Michelle -- Kaabinejadian, Saghar -- Hundal, Jasreet -- Petti, Allegra A -- Ly, Amy -- Lie, Wen-Rong -- Hildebrand, William H -- Mardis, Elaine R -- Linette, Gerald P -- 5U54HG00307/HG/NHGRI NIH HHS/ -- P30 CA091842/CA/NCI NIH HHS/ -- P30 CA91842/CA/NCI NIH HHS/ -- R21 CA179695/CA/NCI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 May 15;348(6236):803-8. doi: 10.1126/science.aaa3828. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA. bcarreno@dom.wustl.edu. ; Genome Institute, Washington University School of Medicine, St. Louis, MO, USA. ; Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA. ; Department of Microbiology and Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA. ; EMD Millipore Corporation, Billerica, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837513" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution/immunology ; Antigen Presentation ; Antigens, Neoplasm/genetics/*immunology ; Cancer Vaccines/immunology/*therapeutic use ; Dendritic Cells/immunology/*transplantation ; HLA-A2 Antigen/genetics/*immunology ; Humans ; Immunotherapy, Active/*methods ; Melanoma/genetics/immunology/*therapy ; Monitoring, Immunologic ; Mutation ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; Skin Neoplasms/genetics/immunology/*therapy ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leslie, Mitch -- New York, N.Y. -- Science. 2015 May 8;348(6235):615-6. doi: 10.1126/science.348.6235.615.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25953984" target="_blank"〉PubMed〈/a〉
    Keywords: Archaea/enzymology/genetics/ultrastructure ; Bacteria/enzymology/genetics/ultrastructure ; *Biological Evolution ; Chloroplasts ; Eukaryota/*classification/genetics/*ultrastructure ; Mitochondria ; Oceans and Seas ; Seawater/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vermeij, Geerat -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1038. doi: 10.1126/science.aad7032.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dept. of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA. gjvermeij@ucdavis.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26612940" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; *Biological Evolution ; Cichlids/*anatomy & histology ; *Extinction, Biological ; Jaw/*anatomy & histology ; Pharynx/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-04-04
    Description: The clinical relevance of T cells in the control of a diverse set of human cancers is now beyond doubt. However, the nature of the antigens that allow the immune system to distinguish cancer cells from noncancer cells has long remained obscure. Recent technological innovations have made it possible to dissect the immune response to patient-specific neoantigens that arise as a consequence of tumor-specific mutations, and emerging data suggest that recognition of such neoantigens is a major factor in the activity of clinical immunotherapies. These observations indicate that neoantigen load may form a biomarker in cancer immunotherapy and provide an incentive for the development of novel therapeutic approaches that selectively enhance T cell reactivity against this class of antigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, Ton N -- Schreiber, Robert D -- R01CA04305926/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):69-74. doi: 10.1126/science.aaa4971.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. t.schumacher@nki.nl schreiber@immunology.wustl.edu. ; Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA. t.schumacher@nki.nl schreiber@immunology.wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838375" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Neoplasm/genetics/*immunology ; Biomarkers, Tumor/genetics/*immunology ; DNA Mutational Analysis ; Exome ; Female ; Genes, Neoplasm ; Humans ; Immunotherapy/*methods ; Mutation ; Neoplasms/genetics/immunology/*therapy ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-06-20
    Description: Hawks et al. argue that our analysis of Australopithecus sediba mandibles is flawed and that specimen LD 350-1 cannot be distinguished from this, or any other, Australopithecus species. Our reexamination of the evidence confirms that LD 350-1 falls outside of the pattern that A. sediba shares with Australopithecus and thus is reasonably assigned to the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Villmoare, Brian -- Kimbel, William H -- Seyoum, Chalachew -- Campisano, Christopher J -- DiMaggio, Erin -- Rowan, John -- Braun, David R -- Arrowsmith, J Ramon -- Reed, Kaye E -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1326. doi: 10.1126/science.aab1122.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA. Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. Department of Anthropology, University College London, London WC1H 0BW, UK. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. Authority for Research and Conservation of Cultural Heritage, Addis Ababa, Ethiopia. ; School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA. ; Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. ; Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Hominidae/*anatomy & histology ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-03-21
    Description: Base-pairing interactions between nucleic acids mediate target recognition in many biological processes. We developed a super-resolution imaging and modeling platform that enabled the in vivo determination of base pairing-mediated target recognition kinetics. We examined a stress-induced bacterial small RNA, SgrS, which induces the degradation of target messenger RNAs (mRNAs). SgrS binds to a primary target mRNA in a reversible and dynamic fashion, and formation of SgrS-mRNA complexes is rate-limiting, dictating the overall regulation efficiency in vivo. Examination of a secondary target indicated that differences in the target search kinetics contribute to setting the regulation priority among different target mRNAs. This super-resolution imaging and analysis approach provides a conceptual framework that can be generalized to other small RNA systems and other target search processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410144/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410144/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fei, Jingyi -- Singh, Digvijay -- Zhang, Qiucen -- Park, Seongjin -- Balasubramanian, Divya -- Golding, Ido -- Vanderpool, Carin K -- Ha, Taekjip -- GM 112659/GM/NIGMS NIH HHS/ -- GM065367/GM/NIGMS NIH HHS/ -- GM082837/GM/NIGMS NIH HHS/ -- GM092830/GM/NIGMS NIH HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- R01 GM082837/GM/NIGMS NIH HHS/ -- R01 GM092830/GM/NIGMS NIH HHS/ -- R01 GM112659/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1371-4. doi: 10.1126/science.1258849.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Physics of Living Cells, Department of Physics, University of Illinois, Urbana, IL, USA. ; Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL, USA. ; Department of Microbiology, University of Illinois, Urbana, IL, USA. ; Center for the Physics of Living Cells, Department of Physics, University of Illinois, Urbana, IL, USA. Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA. ; Department of Microbiology, University of Illinois, Urbana, IL, USA. tjha@illinois.edu cvanderp@life.uiuc.edu. ; Center for the Physics of Living Cells, Department of Physics, University of Illinois, Urbana, IL, USA. Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL, USA. Carl R. Woese Institute for Genomic Biology, Howard Hughes Medical Institute, Urbana, IL, USA. Howard Hughes Medical Institute, Urbana, IL, USA. tjha@illinois.edu cvanderp@life.uiuc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25792329" target="_blank"〉PubMed〈/a〉
    Keywords: *Base Pairing ; Endoribonucleases/chemistry/genetics ; Escherichia coli/genetics/metabolism ; Kinetics ; Molecular Imaging/*methods ; Mutation ; Phosphoenolpyruvate Sugar Phosphotransferase System/genetics ; *RNA Stability ; RNA, Messenger/*chemistry ; RNA, Small Untranslated/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-03-06
    Description: Our understanding of the origin of the genus Homo has been hampered by a limited fossil record in eastern Africa between 2.0 and 3.0 million years ago (Ma). Here we report the discovery of a partial hominin mandible with teeth from the Ledi-Geraru research area, Afar Regional State, Ethiopia, that establishes the presence of Homo at 2.80 to 2.75 Ma. This specimen combines primitive traits seen in early Australopithecus with derived morphology observed in later Homo, confirming that dentognathic departures from the australopith pattern occurred early in the Homo lineage. The Ledi-Geraru discovery has implications for hypotheses about the timing and place of origin of the genus Homo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Villmoare, Brian -- Kimbel, William H -- Seyoum, Chalachew -- Campisano, Christopher J -- DiMaggio, Erin N -- Rowan, John -- Braun, David R -- Arrowsmith, J Ramon -- Reed, Kaye E -- New York, N.Y. -- Science. 2015 Mar 20;347(6228):1352-5. doi: 10.1126/science.aaa1343. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA. Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. Department of Anthropology, University College London, London WC1H 0BW, UK. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. brian.villmoare@unlv.edu wkimbel.iho@asu.edu. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. Authority for Research and Conservation of Cultural Heritage, Addis Ababa, Ethiopia. ; Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA. ; Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. ; Center for the Advanced Study of Hominin Paleobiology, George Washington University, Washington, DC 20052, USA. ; School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739410" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Ethiopia ; Fossils ; Hominidae/*anatomy & histology ; Humans ; Mandible/anatomy & histology ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1407. doi: 10.1126/science.347.6229.1407.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25814564" target="_blank"〉PubMed〈/a〉
    Keywords: Ebola Vaccines/*genetics ; Ebolavirus/*genetics ; *Evolution, Molecular ; Hemorrhagic Fever, Ebola/*prevention & control/*virology ; Humans ; Mali/epidemiology ; Mutation ; Sequence Analysis, RNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lichten, Michael -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):913. doi: 10.1126/science.aad5404. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute, Bethesda, MD 20892, USA. mlichten@helix.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586748" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *DNA Breaks, Double-Stranded ; *Evolution, Molecular ; Finches/*genetics ; *Gene Expression Regulation ; *Homologous Recombination ; Meiosis/*genetics ; *Recombination, Genetic ; Repressor Proteins/*genetics ; Saccharomyces cerevisiae/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-08-15
    Description: Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1(E861A), where E861A denotes Glu(861)--〉Ala(861)). Adar1(E861A/E861A) embryos died at ~E13.5 (embryonic day 13.5), with activated interferon and double-stranded RNA (dsRNA)-sensing pathways. Genome-wide analysis of the in vivo substrates of ADAR1 identified clustered hyperediting within long dsRNA stem loops within 3' untranslated regions of endogenous transcripts. Finally, embryonic death and phenotypes of Adar1(E861A/E861A) were rescued by concurrent deletion of the cytosolic sensor of dsRNA, MDA5. A-to-I editing of endogenous dsRNA is the essential function of ADAR1, preventing the activation of the cytosolic dsRNA response by endogenous transcripts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liddicoat, Brian J -- Piskol, Robert -- Chalk, Alistair M -- Ramaswami, Gokul -- Higuchi, Miyoko -- Hartner, Jochen C -- Li, Jin Billy -- Seeburg, Peter H -- Walkley, Carl R -- R01GM102484/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):1115-20. doi: 10.1126/science.aac7049. Epub 2015 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. ; Department of Genetics, Stanford University, Stanford, CA 94305, USA. ; Department of Molecular Neurobiology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany. ; Taconic Biosciences, 51063 Cologne, Germany. ; St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia. cwalkley@svi.edu.au.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26275108" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Adenosine/genetics ; Adenosine Deaminase/genetics/*metabolism ; Animals ; DEAD-box RNA Helicases/genetics/*metabolism ; Embryo Loss/*genetics ; Gene Deletion ; Gene Knock-In Techniques ; Inosine/genetics ; Mice ; Mice, Mutant Strains ; Mutation ; Nucleic Acid Conformation ; *RNA Editing ; RNA, Double-Stranded/chemistry/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):372-3. doi: 10.1126/science.349.6246.372.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206914" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Collagen/chemistry ; *Extinction, Biological ; Fossils ; Humans ; Mammals ; Paleontology/*methods ; Proteomics/*methods ; Sequence Analysis, Protein/*methods ; Skull
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-06-06
    Description: Retroviruses depend on self-assembly of their capsid proteins (core particle) to yield infectious mature virions. Despite the essential role of the retroviral core, its high polymorphism has hindered high-resolution structural analyses. Here, we report the x-ray structure of the native capsid (CA) protein from bovine leukemia virus. CA is organized as hexamers that deviate substantially from sixfold symmetry, yet adjust to make two-dimensional pseudohexagonal arrays that mimic mature retroviral cores. Intra- and interhexameric quasi-equivalent contacts are uncovered, with flexible trimeric lateral contacts among hexamers, yet preserving very similar dimeric interfaces making the lattice. The conformation of each capsid subunit in the hexamer is therefore dictated by long-range interactions, revealing how the hexamers can also assemble into closed core particles, a relevant feature of retrovirus biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obal, G -- Trajtenberg, F -- Carrion, F -- Tome, L -- Larrieux, N -- Zhang, X -- Pritsch, O -- Buschiazzo, A -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):95-8. doi: 10.1126/science.aaa5182. Epub 2015 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la Republica, Avenida General Flores 2125, 11800, Montevideo, Uruguay. ; Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, 11400, Montevideo, Uruguay. ; Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. ; Institut Pasteur, Unite de Virologie Structurale, Departement de Virologie and CNRS Unite Mixte de Recherche 3569, 28, Rue du Docteur Roux, 75015, Paris, France. ; Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la Republica, Avenida General Flores 2125, 11800, Montevideo, Uruguay. pritsch@pasteur.edu.uy alebus@pasteur.edu.uy. ; Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, 11400, Montevideo, Uruguay. Institut Pasteur, Department of Structural Biology and Chemistry, 25, Rue du Dr Roux, 75015, Paris, France. pritsch@pasteur.edu.uy alebus@pasteur.edu.uy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26044299" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Capsid/*chemistry ; Capsid Proteins/*chemistry/genetics ; Cattle ; Crystallography, X-Ray ; Leukemia Virus, Bovine/*chemistry/genetics ; Molecular Sequence Data ; Mutation ; Protein Multimerization ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wade, Lizzie -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):370-1. doi: 10.1126/science.349.6246.370. Epub 2015 Jul 23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206913" target="_blank"〉PubMed〈/a〉
    Keywords: Analytic Sample Preparation Methods ; Animals ; Biodiversity ; *Biological Evolution ; *Caves ; Cold Temperature ; DNA/chemistry/*genetics/*isolation & purification ; Hot Temperature ; Mexico ; Rodentia/*genetics ; Tooth/chemistry ; *Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, Peter J -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):736-7. doi: 10.1126/science.aad6283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA. wagnerpj@si.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Body Size ; Fishes/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-06-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fredrickson, James K -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):1425-7. doi: 10.1126/science.aab0946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA. jim.fredrickson@pnnl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113703" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics/physiology ; Bacteria/genetics ; Genetic Fitness ; Microbial Consortia/genetics/*physiology ; Microbial Interactions/genetics/*physiology ; Mutation ; Synthetic Biology ; Yeasts/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-07-15
    Description: Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-gamma (IFN-gamma) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORgamma and RORgammaT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORgamma- and RORgammaT-deficient individuals also displayed an impaired IFN-gamma response to Mycobacterium. This principally reflected profoundly defective IFN-gamma production by circulating gammadelta T cells and CD4(+)CCR6(+)CXCR3(+) alphabeta T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORgamma, RORgammaT, or both.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Satoshi -- Markle, Janet G -- Deenick, Elissa K -- Mele, Federico -- Averbuch, Dina -- Lagos, Macarena -- Alzahrani, Mohammed -- Al-Muhsen, Saleh -- Halwani, Rabih -- Ma, Cindy S -- Wong, Natalie -- Soudais, Claire -- Henderson, Lauren A -- Marzouqa, Hiyam -- Shamma, Jamal -- Gonzalez, Marcela -- Martinez-Barricarte, Ruben -- Okada, Chizuru -- Avery, Danielle T -- Latorre, Daniela -- Deswarte, Caroline -- Jabot-Hanin, Fabienne -- Torrado, Egidio -- Fountain, Jeffrey -- Belkadi, Aziz -- Itan, Yuval -- Boisson, Bertrand -- Migaud, Melanie -- Arlehamn, Cecilia S Lindestam -- Sette, Alessandro -- Breton, Sylvain -- McCluskey, James -- Rossjohn, Jamie -- de Villartay, Jean-Pierre -- Moshous, Despina -- Hambleton, Sophie -- Latour, Sylvain -- Arkwright, Peter D -- Picard, Capucine -- Lantz, Olivier -- Engelhard, Dan -- Kobayashi, Masao -- Abel, Laurent -- Cooper, Andrea M -- Notarangelo, Luigi D -- Boisson-Dupuis, Stephanie -- Puel, Anne -- Sallusto, Federica -- Bustamante, Jacinta -- Tangye, Stuart G -- Casanova, Jean-Laurent -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272200900044C/AI/NIAID NIH HHS/ -- HHSN272200900044C/PHS HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- T32 AI007512/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):606-13. doi: 10.1126/science.aaa4282. Epub 2015 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. Department of Pediatrics, Padre Hurtado Hospital and Clinica Alemana, Santiago, Chile. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ; Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Department of Pediatrics, Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia. ; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. ; Institut Curie, INSERM U932, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. ; Caritas Baby Hospital, Post Office Box 11535, Jerusalem, Israel. ; Department of Immunology, School of Medicine, Universidad de Valparaiso, Santiago, Chile. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Trudeau Institute, Saranac Lake, NY 12983, USA. ; La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; Department of Radiology, Assistance Publique-Hopitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France. ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia. ; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia. Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia. Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Laboratoire Dynamique du Genome et Systeme Immunitaire, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne NE4 6BE, UK. ; Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Universite Paris Descartes-Sorbonne Paris Cite, Imagine Institute, Paris, France. ; Department of Paediatric Allergy Immunology, University of Manchester, Royal Manchester Children's Hospital, Manchester, UK. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. ; Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA. Manton Center for Orphan Disease Research, Children's Hospital, Boston, MA 02115, USA. ; Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris, France. Paris Descartes University, Imagine Institute, Paris, France. Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France. Howard Hughes Medical Institute, New York, NY 10065, USA. jmarkle@rockefeller.edu jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160376" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Candida albicans/*immunology ; Candidiasis, Chronic Mucocutaneous/complications/*genetics/immunology ; Cattle ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exome/genetics ; Female ; Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; Humans ; Immunity/*genetics ; Interferon-gamma/immunology ; Interleukin-17/immunology ; Mice ; Mutation ; Mycobacterium bovis/immunology/isolation & purification ; Mycobacterium tuberculosis/immunology/isolation & purification ; Nuclear Receptor Subfamily 1, Group F, Member 3/*genetics ; Pedigree ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology ; Receptors, Antigen, T-Cell, gamma-delta/genetics/immunology ; Severe Combined Immunodeficiency/*genetics ; T-Lymphocytes/immunology ; Thymus Gland/abnormalities/immunology ; Tuberculosis, Bovine/*genetics/immunology ; Tuberculosis, Pulmonary/*genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-14
    Description: Mammoths provide a detailed example of species origins and dispersal, but understanding has been impeded by taxonomic confusion, especially in North America. The Columbian mammoth Mammuthus columbi was thought to have evolved in North America from a more primitive Eurasian immigrant. The earliest American mammoths (1.5 million years ago), however, resemble the advanced Eurasian M. trogontherii that crossed the Bering land bridge around that time, giving rise directly to M. columbi. Woolly mammoth M. primigenius later evolved in Beringia and spread into Europe and North America, leading to a diversity of morphologies as it encountered endemic M. trogontherii and M. columbi, respectively. In North America, this included intermediates ("M. jeffersonii"), suggesting introgression of M. primigenius with M. columbi. The lineage illustrates the dynamic interplay of local adaptation, dispersal, and gene flow in the evolution of a widely distributed species complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, A M -- Sher, A V -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):805-9. doi: 10.1126/science.aac5660.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. a.lister@nhm.ac.uk. ; Severtsov Institute of Ecology and Evolution, Moscow 119071, Russia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564853" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animal Migration ; Animals ; *Biological Evolution ; Europe ; Fossils ; Gene Flow ; Mammoths/anatomy & histology/*classification/genetics ; Molar/anatomy & histology ; North America ; Tooth Wear/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-06-13
    Description: Steffen et al. (Research Articles, 13 February 2015, p. 736) recently assessed current global freshwater use, finding it to be well below a corresponding planetary boundary. However, they ignored recent scientific advances implying that the global consumptive use of freshwater may have already crossed the associated planetary boundary.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaramillo, Fernando -- Destouni, Georgia -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1217. doi: 10.1126/science.aaa9629. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Geography, Stockholm University, SE-106 91, Stockholm, Sweden. Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden. fernando.jaramillo@natgeo.su.se. ; Department of Physical Geography, Stockholm University, SE-106 91, Stockholm, Sweden. Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068843" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-04-25
    Description: An organism with a single recessive loss-of-function allele will typically have a wild-type phenotype, whereas individuals homozygous for two copies of the allele will display a mutant phenotype. We have developed a method called the mutagenic chain reaction (MCR), which is based on the CRISPR/Cas9 genome-editing system for generating autocatalytic mutations, to produce homozygous loss-of-function mutations. In Drosophila, we found that MCR mutations efficiently spread from their chromosome of origin to the homologous chromosome, thereby converting heterozygous mutations to homozygosity in the vast majority of somatic and germline cells. MCR technology should have broad applications in diverse organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gantz, Valentino M -- Bier, Ethan -- R01 AI070654/AI/NIAID NIH HHS/ -- R01 AI110713/AI/NIAID NIH HHS/ -- R01 GM067247/GM/NIGMS NIH HHS/ -- R56 NS029870/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 24;348(6233):442-4. doi: 10.1126/science.aaa5945. Epub 2015 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92095, USA. vgantz@ucsd.edu ebier@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25908821" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Caspase 9 ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Drosophila melanogaster/genetics ; Female ; Genetic Engineering/*methods ; Genome, Insect ; Germ Cells ; *Heterozygote ; *Homozygote ; Male ; *Mutagenesis ; Mutation ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-03-31
    Description: Severe influenza disease strikes otherwise healthy children and remains unexplained. We report compound heterozygous null mutations in IRF7, which encodes the transcription factor interferon regulatory factor 7, in an otherwise healthy child who suffered life-threatening influenza during primary infection. In response to influenza virus, the patient's leukocytes and plasmacytoid dendritic cells produced very little type I and III interferons (IFNs). Moreover, the patient's dermal fibroblasts and induced pluripotent stem cell (iPSC)-derived pulmonary epithelial cells produced reduced amounts of type I IFN and displayed increased influenza virus replication. These findings suggest that IRF7-dependent amplification of type I and III IFNs is required for protection against primary infection by influenza virus in humans. They also show that severe influenza may result from single-gene inborn errors of immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431581/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431581/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ciancanelli, Michael J -- Huang, Sarah X L -- Luthra, Priya -- Garner, Hannah -- Itan, Yuval -- Volpi, Stefano -- Lafaille, Fabien G -- Trouillet, Celine -- Schmolke, Mirco -- Albrecht, Randy A -- Israelsson, Elisabeth -- Lim, Hye Kyung -- Casadio, Melina -- Hermesh, Tamar -- Lorenzo, Lazaro -- Leung, Lawrence W -- Pedergnana, Vincent -- Boisson, Bertrand -- Okada, Satoshi -- Picard, Capucine -- Ringuier, Benedicte -- Troussier, Francoise -- Chaussabel, Damien -- Abel, Laurent -- Pellier, Isabelle -- Notarangelo, Luigi D -- Garcia-Sastre, Adolfo -- Basler, Christopher F -- Geissmann, Frederic -- Zhang, Shen-Ying -- Snoeck, Hans-Willem -- Casanova, Jean-Laurent -- 1U19AI109945/AI/NIAID NIH HHS/ -- 5R01AI100887/AI/NIAID NIH HHS/ -- 5R01NS072381/NS/NINDS NIH HHS/ -- 8UL1TR000043/TR/NCATS NIH HHS/ -- HHSN272201400008C/PHS HHS/ -- R01 AI100887/AI/NIAID NIH HHS/ -- R01 NS072381/NS/NINDS NIH HHS/ -- U19 AI109945/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 24;348(6233):448-53. doi: 10.1126/science.aaa1578. Epub 2015 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. ; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA. Department of Medicine, Columbia University Medical Center, New York, NY, USA. ; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London SE1 1UL, UK. ; Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA, USA. Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy. ; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; Department of Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA. ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. University Paris Descartes, Imagine Institute, Paris, France. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. University Paris Descartes, Imagine Institute, Paris, France. Study Centre for Primary Immunodeficiencies, AP-HP, Necker Hospital, Paris, France. ; Pediatric Intensive Care Unit, University Hospital, Angers, France. ; General Pediatrics Unit, University Hospital, Angers, France. ; Department of Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA. Department of Systems Biology, Sidra Medical and Research Center, Doha, Qatar. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. University Paris Descartes, Imagine Institute, Paris, France. ; Pediatric Immunology, Hematology and Oncology Unit, University Hospital Centre of Angers, Angers, France. INSERM U892, CNRS U6299, Angers, France. ; Division of Immunology and Manton Center for Orphan Disease Research, Children's Hospital, Harvard Medical School, Boston, MA, USA. ; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. University Paris Descartes, Imagine Institute, Paris, France. Pediatric Immuno-Hematology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France. Howard Hughes Medical Institute, New York, NY, USA. jean-laurent.casanova@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25814066" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; Dendritic Cells/immunology ; Female ; Fibroblasts/immunology ; Genes, Recessive ; *Heterozygote ; Humans ; Induced Pluripotent Stem Cells/immunology ; *Influenza A Virus, H1N1 Subtype ; Influenza, Human/complications/genetics/*immunology ; Interferon Regulatory Factor-7/*genetics ; Interferon Type I/*biosynthesis/genetics ; Leukocytes/immunology ; Lung/immunology ; Mutation ; Respiratory Distress Syndrome, Adult/genetics/*immunology/virology ; Respiratory Mucosa/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-10-31
    Description: Miocene small-bodied anthropoid primates from Africa and Eurasia are generally considered to precede the divergence between the two groups of extant catarrhines-hominoids (apes and humans) and Old World monkeys-and are thus viewed as more primitive than the stem ape Proconsul. Here we describe Pliobates cataloniae gen. et sp. nov., a small-bodied (4 to 5 kilograms) primate from the Iberian Miocene (11.6 million years ago) that displays a mosaic of primitive characteristics coupled with multiple cranial and postcranial shared derived features of extant hominoids. Our cladistic analyses show that Pliobates is a stem hominoid that is more derived than previously described small catarrhines and Proconsul. This forces us to reevaluate the role played by small-bodied catarrhines in ape evolution and provides key insight into the last common ancestor of hylobatids (gibbons) and hominids (great apes and humans).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alba, David M -- Almecija, Sergio -- DeMiguel, Daniel -- Fortuny, Josep -- Perez de los Rios, Miriam -- Pina, Marta -- Robles, Josep M -- Moya-Sola, Salvador -- New York, N.Y. -- Science. 2015 Oct 30;350(6260):aab2625. doi: 10.1126/science.aab2625. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. ; Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA. Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. ; Institut Catala de Paleontologia Miquel Crusafont (ICP), Universitat Autonoma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. FOSSILIA Serveis Paleontologics i Geologics, Jaume I 87, 5e 1a, 08470 Sant Celoni, Barcelona, Spain. ; Institucio Catalana de Recerca i Estudis Avancats at ICP and Unitat d'Antropologia Biologica (Department de Biologia Animal, de Biologia Vegetal i d'Ecologia), Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes sense numero, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Weight ; Bone and Bones/anatomy & histology ; Brain/anatomy & histology/growth & development ; Dentition ; Hominidae/anatomy & histology/*classification/growth & development ; Humans ; Hylobates/anatomy & histology/*classification/growth & development ; Phylogeny ; Skull/anatomy & histology/growth & development ; Spain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-10-17
    Description: Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiao, Lianying -- Liu, Xin -- GM114576/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):aac4383. doi: 10.1126/science.aac4383. Epub 2015 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. xin.liu@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472914" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Catalysis ; Catalytic Domain ; Chaetomium/genetics/*metabolism ; Crystallography, X-Ray ; Fungal Proteins/antagonists & inhibitors/*chemistry/metabolism ; *Gene Silencing ; Histones/*metabolism ; Humans ; Jumonji Domain-Containing Histone Demethylases/metabolism ; Methylation ; Molecular Sequence Data ; Mutation ; Neoplasms/genetics ; Polycomb Repressive Complex 2/antagonists & inhibitors/*chemistry/metabolism ; Protein Structure, Tertiary ; S-Adenosylhomocysteine/chemistry/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-09-05
    Description: In a short hairpin RNA screen for genes that affect AKT phosphorylation, we identified the RAB35 small guanosine triphosphatase (GTPase)-a protein previously implicated in endomembrane trafficking-as a regulator of the phosphatidylinositol 3'-OH kinase (PI3K) pathway. Depletion of RAB35 suppresses AKT phosphorylation in response to growth factors, whereas expression of a dominant active GTPase-deficient mutant of RAB35 constitutively activates the PI3K/AKT pathway. RAB35 functions downstream of growth factor receptors and upstream of PDK1 and mTORC2 and copurifies with PI3K in immunoprecipitation assays. Two somatic RAB35 mutations found in human tumors generate alleles that constitutively activate PI3K/AKT signaling, suppress apoptosis, and transform cells in a PI3K-dependent manner. Furthermore, oncogenic RAB35 is sufficient to drive platelet-derived growth factor receptor alpha to LAMP2-positive endomembranes in the absence of ligand, suggesting that there may be latent oncogenic potential in dysregulated endomembrane trafficking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600465/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600465/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, Douglas B -- Zoncu, Roberto -- Root, David E -- Sabatini, David M -- Sawyers, Charles L -- 1DP2CA195761-01/CA/NCI NIH HHS/ -- AI47389/AI/NIAID NIH HHS/ -- CA092629/CA/NCI NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA155169/CA/NCI NIH HHS/ -- GM07739/GM/NIGMS NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA155169/CA/NCI NIH HHS/ -- R01 CA193837/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 9;350(6257):211-7. doi: 10.1126/science.aaa4903. Epub 2015 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Weill Cornell/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. sawyersc@mskcc.org sabatini@wi.mit.edu. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. sawyersc@mskcc.org sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26338797" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line, Tumor ; Gene Deletion ; Humans ; Immunoprecipitation ; Lysosomal-Associated Membrane Protein 2/metabolism ; Multiprotein Complexes/metabolism ; Mutation ; Neoplasms/genetics/*metabolism/pathology ; Oncogene Proteins/genetics/*metabolism ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphorylation/genetics ; Protein Transport ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; RNA Interference ; RNA, Small Interfering/genetics ; Receptor, Platelet-Derived Growth Factor alpha/metabolism ; TOR Serine-Threonine Kinases/metabolism ; rab GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-06-06
    Description: Skinner and colleagues (Research Article, 23 January 2015, p. 395), based on metacarpal trabecular bone structure, argue that Australopithecus africanus employed human-like dexterity for stone tool making and use 3 million years ago. However, their evolutionary and biological assumptions are misinformed, failing to refute the previously existing hypothesis that human-like manipulation preceded systematized stone tool manufacture, as indicated by the fossil record.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Almecija, Sergio -- Wallace, Ian J -- Judex, Stefan -- Alba, David M -- Moya-Sola, Salvador -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1101. doi: 10.1126/science.aaa8414.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA. Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA. Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. sergio.almecija@gmail.com. ; Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA. ; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA. ; Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain. ; ICREA at Institut Catala de Paleontologia Miquel Crusafont and Unitat d'Antropologia Biologica (Departament BABVE), Universitat Autonoma de Barcelona, Edifici ICTA-CP, Carrer de les Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26045428" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Humans ; Metacarpal Bones/*anatomy & histology ; Metacarpus/*anatomy & histology ; Thumb/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-06-13
    Description: Jaramillo and Destouni claim that freshwater consumption is beyond the planetary boundary, based on high estimates of water cycle components, different definitions of water consumption, and extrapolation from a single case study. The difference from our analysis, based on mainstream assessments of global water consumption, highlights the need for clearer definitions of water cycle components and improved models and databases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerten, Dieter -- Rockstrom, Johan -- Heinke, Jens -- Steffen, Will -- Richardson, Katherine -- Cornell, Sarah -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1217. doi: 10.1126/science.aab0031. Epub 2015 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Domain of Earth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. gerten@pik-potsdam.de. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. ; Research Domain of Earth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany. International Livestock Research Institute, Nairobi, 00100 Kenya. Commonwealth Scientific and Industrial Research Organization, St. Lucia, QLD 4067, Australia. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia. ; Center for Macroecology, Evolution, and Climate, University of Copenhagen, Natural History Museum of Denmark, 2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068844" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-08-15
    Description: The evolution of sexual reproduction is often explained by Red Queen dynamics: Organisms must continually evolve to maintain fitness relative to interacting organisms, such as parasites. Recombination accompanies sexual reproduction and helps diversify an organism's offspring, so that parasites cannot exploit static host genotypes. Here we show that Drosophila melanogaster plastically increases the production of recombinant offspring after infection. The response is consistent across genetic backgrounds, developmental stages, and parasite types but is not induced after sterile wounding. Furthermore, the response appears to be driven by transmission distortion rather than increased recombination. Our study extends the Red Queen model to include the increased production of recombinant offspring and uncovers a remarkable ability of hosts to actively distort their recombination fraction in rapid response to environmental cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Nadia D -- Criscoe, Dallas R -- Skolfield, Shelly -- Kohl, Kathryn P -- Keebaugh, Erin S -- Schlenke, Todd A -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):747-50. doi: 10.1126/science.aab1768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA. ndsingh@ncsu.edu schlenkt@reed.edu. ; Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA. ; Department of Biology, Reed College, Portland, OR, USA. ; Department of Biology, Winthrop University, Rock Hill, SC, USA. ; Department of Biology, Emory University, Atlanta, GA, USA. ; Department of Biology, Reed College, Portland, OR, USA. ndsingh@ncsu.edu schlenkt@reed.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26273057" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Drosophila melanogaster/*genetics/growth & development/*parasitology ; Female ; *Genetic Fitness ; Genetic Variation ; Larva ; Male ; Mutation ; Parasitic Diseases/genetics ; *Recombination, Genetic ; Reproduction/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1014. doi: 10.1126/science.350.6264.1014.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26612928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/*genetics/growth & development/*immunology ; Antibodies/*genetics ; Clustered Regularly Interspaced Short Palindromic Repeats ; Genetic Engineering/*methods ; Humans ; Life Cycle Stages/immunology ; Malaria/parasitology/*prevention & control ; Mice ; Mosquito Control/*methods ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):729-30. doi: 10.1126/science.350.6262.729.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26564827" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Brain/*growth & development ; *Fossils ; Pandalidae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-02-24
    Description: Macromolecular function is rooted in energy landscapes, where sequence determines not a single structure but an ensemble of conformations. Hence, evolution modifies a protein's function by altering its energy landscape. Here, we recreate the evolutionary pathway between two modern human oncogenes, Src and Abl, by reconstructing their common ancestors. Our evolutionary reconstruction combined with x-ray structures of the common ancestor and pre-steady-state kinetics reveals a detailed atomistic mechanism for selectivity of the successful cancer drug Gleevec. Gleevec affinity is gained during the evolutionary trajectory toward Abl and lost toward Src, primarily by shifting an induced-fit equilibrium that is also disrupted in the clinical T315I resistance mutation. This work reveals the mechanism of Gleevec specificity while offering insights into how energy landscapes evolve.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405104/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405104/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, C -- Agafonov, R V -- Hoemberger, M -- Kutter, S -- Zorba, A -- Halpin, J -- Buosi, V -- Otten, R -- Waterman, D -- Theobald, D L -- Kern, D -- GM094468/GM/NIGMS NIH HHS/ -- GM096053/GM/NIGMS NIH HHS/ -- GM100966-01/GM/NIGMS NIH HHS/ -- R01 GM094468/GM/NIGMS NIH HHS/ -- R01 GM096053/GM/NIGMS NIH HHS/ -- R01 GM100966/GM/NIGMS NIH HHS/ -- T32 EB009419/EB/NIBIB NIH HHS/ -- T32 GM007596/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):882-6. doi: 10.1126/science.aaa1823.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA. ; Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA. ; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA. dkern@brandeis.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700521" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/chemistry/*pharmacology ; Benzamides/chemistry/*pharmacology ; Drug Resistance, Neoplasm/*genetics ; Entropy ; *Evolution, Molecular ; Humans ; Imatinib Mesylate ; Mutation ; Oncogene Proteins v-abl/chemistry/genetics ; Phylogeny ; Piperazines/chemistry/*pharmacology ; Protein Binding ; Protein Kinase Inhibitors/chemistry/*pharmacology ; Protein Structure, Secondary ; Pyrimidines/chemistry/*pharmacology ; src-Family Kinases/*chemistry/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-10-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):264. doi: 10.1126/science.350.6258.264.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472887" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; *Biological Evolution ; Caves ; China ; *Fossils ; *Human Migration ; Humans ; Tooth
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-06-06
    Description: Almecija and colleagues claim that we apply a simplified understanding of bone functional adaptation and that our results of human-like hand use in Australopithecus africanus are not novel. We argue that our results speak to actual behavior, rather than potential behaviors, and our functional interpretation is well supported by our methodological approach, comparative sample, and previous experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skinner, Matthew M -- Stephens, Nicholas B -- Tsegai, Zewdi J -- Foote, Alexandra C -- Nguyen, N Huynh -- Gross, Thomas -- Pahr, Dieter H -- Hublin, Jean-Jacques -- Kivell, Tracy L -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1101. doi: 10.1126/science.aaa8931.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK. Department of Anthropology, University College London London, WC1H 0BW, UK. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. m.skinner@kent.ac.uk t.l.kivell@kent.ac.uk. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Anthropology, University College London London, WC1H 0BW, UK. ; Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Wien, Vienna, Austria. ; School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. m.skinner@kent.ac.uk t.l.kivell@kent.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26045429" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Humans ; Metacarpal Bones/*anatomy & histology ; Metacarpus/*anatomy & histology ; Thumb/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-02-14
    Description: A new Late Jurassic docodontan shows specializations for a subterranean lifestyle. It is similar to extant subterranean golden moles in having reduced digit segments as compared to the ancestral phalangeal pattern of mammaliaforms and extant mammals. The reduction of digit segments can occur in mammals by fusion of the proximal and intermediate phalangeal precursors, a developmental process for which a gene and signaling network have been characterized in mouse and human. Docodontans show a positional shift of thoracolumbar ribs, a developmental variation that is controlled by Hox9 and Myf5 genes in extant mammals. We argue that these morphogenetic mechanisms of modern mammals were operating before the rise of modern mammals, driving the morphological disparity in the earliest mammaliaform diversification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, Zhe-Xi -- Meng, Qing-Jin -- Ji, Qiang -- Liu, Di -- Zhang, Yu-Guang -- Neander, April I -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):760-4. doi: 10.1126/science.1260880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA. zxluo@uchicago.edu mengqingjin@bmnh.org.cn. ; Beijing Museum of Natural History, Beijing 100050, China. zxluo@uchicago.edu mengqingjin@bmnh.org.cn. ; Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China. ; Beijing Museum of Natural History, Beijing 100050, China. ; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; China ; Finger Phalanges/*anatomy & histology/*growth & development ; Foot/anatomy & histology/growth & development ; Homeodomain Proteins/genetics/physiology ; Humans ; Mammals/*anatomy & histology/genetics/*growth & development ; Mice ; Morphogenesis/genetics/*physiology ; Myogenic Regulatory Factor 5/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-01-24
    Description: The distinctly human ability for forceful precision and power "squeeze" gripping is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of tools. However, it is unclear when these locomotory and manipulative transitions occurred. Here we show that Australopithecus africanus (~3 to 2 million years ago) and several Pleistocene hominins, traditionally considered not to have engaged in habitual tool manufacture, have a human-like trabecular bone pattern in the metacarpals consistent with forceful opposition of the thumb and fingers typically adopted during tool use. These results support archaeological evidence for stone tool use in australopiths and provide morphological evidence that Pliocene hominins achieved human-like hand postures much earlier and more frequently than previously considered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skinner, Matthew M -- Stephens, Nicholas B -- Tsegai, Zewdi J -- Foote, Alexandra C -- Nguyen, N Huynh -- Gross, Thomas -- Pahr, Dieter H -- Hublin, Jean-Jacques -- Kivell, Tracy L -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):395-9. doi: 10.1126/science.1261735.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK. Department of Anthropology, University College London, London WC1H 0BW, UK. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig Germany. Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. m.skinner@kent.ac.uk t.l.kivell@kent.ac.uk. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig Germany. ; Department of Anthropology, University College London, London WC1H 0BW, UK. ; Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Wien, Vienna, Austria. ; School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig Germany. Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa. m.skinner@kent.ac.uk t.l.kivell@kent.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613885" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeology ; *Biological Evolution ; Hominidae/anatomy & histology ; Humans ; Metacarpal Bones/*anatomy & histology ; Metacarpus/*anatomy & histology/physiology ; Neanderthals/anatomy & histology ; Posture ; Thumb/*anatomy & histology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-06-27
    Description: Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winzer, Thilo -- Kern, Marcelo -- King, Andrew J -- Larson, Tony R -- Teodor, Roxana I -- Donninger, Samantha L -- Li, Yi -- Dowle, Adam A -- Cartwright, Jared -- Bates, Rachel -- Ashford, David -- Thomas, Jerry -- Walker, Carol -- Bowser, Tim A -- Graham, Ian A -- BB/K018809/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):309-12. doi: 10.1126/science.aab1852. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK. ; Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK. ; GlaxoSmithKline, 1061 Mountain Highway, Post Office Box 168, Boronia, Victoria 3155, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113639" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Benzylisoquinolines/chemistry/*metabolism ; Cytochrome P-450 Enzyme System/genetics/*metabolism ; Genetic Loci ; Isoquinolines/chemistry/*metabolism ; Molecular Sequence Data ; Morphinans/chemistry/*metabolism ; Mutation ; Oxidation-Reduction ; Papaver/*enzymology/genetics ; Plant Proteins/genetics/*metabolism ; Quaternary Ammonium Compounds/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):362-6. doi: 10.1126/science.349.6246.362.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206910" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeology ; Asia/ethnology ; *Biological Evolution ; DNA/*genetics ; Europe/ethnology ; *Genome, Human ; Humans ; Russia/ethnology ; *Sequence Analysis, DNA ; Skull
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-07-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):21-3. doi: 10.1126/science.349.6243.21.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138961" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Brain/*anatomy & histology/*embryology ; DNA/genetics ; *Enhancer Elements, Genetic ; GTPase-Activating Proteins/genetics ; Gene Dosage ; Genes, Regulator ; Genetic Engineering ; *Genome, Human ; Humans ; Mice ; Mutagenesis, Insertional ; Organ Size/genetics ; Pan troglodytes/anatomy & histology/embryology/genetics ; Receptors, Cell Surface/genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 May 22;348(6237):847. doi: 10.1126/science.348.6237.847.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; DNA/*genetics ; Europe ; *Fossils ; Humans ; *Mandible ; Neanderthals/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-11-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):619. doi: 10.1126/science.350.6261.619.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ascorbic Acid/pharmacology/*therapeutic use ; Biological Transport ; Free Radicals/metabolism ; Glucose/metabolism ; Glucose Transporter Type 1/genetics/metabolism ; Mice ; Mutation ; Neoplasms/*drug therapy/genetics/metabolism ; Proto-Oncogene Proteins/genetics ; Proto-Oncogene Proteins B-raf/genetics ; Vitamins/pharmacology/*therapeutic use ; ras Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1056-7. doi: 10.1126/science.347.6226.1056-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Ethiopia ; *Fossils ; Hominidae/anatomy & histology/*genetics ; Jaw/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-09-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2015 Sep 11;349(6253):1149-50. doi: 10.1126/science.349.6253.1149.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26359379" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Bone and Bones/*anatomy & histology ; Caves ; *Fossils ; Humans ; South Africa ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-11-07
    Description: Anion exchanger 1 (AE1), also known as band 3 or SLC4A1, plays a key role in the removal of carbon dioxide from tissues by facilitating the exchange of chloride and bicarbonate across the plasma membrane of erythrocytes. An isoform of AE1 is also present in the kidney. Specific mutations in human AE1 cause several types of hereditary hemolytic anemias and/or distal renal tubular acidosis. Here we report the crystal structure of the band 3 anion exchanger domain (AE1(CTD)) at 3.5 angstroms. The structure is locked in an outward-facing open conformation by an inhibitor. Comparing this structure with a substrate-bound structure of the uracil transporter UraA in an inward-facing conformation allowed us to identify the anion-binding position in the AE1(CTD), and to propose a possible transport mechanism that could explain why selected mutations lead to disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arakawa, Takatoshi -- Kobayashi-Yurugi, Takami -- Alguel, Yilmaz -- Iwanari, Hiroko -- Hatae, Hinako -- Iwata, Momi -- Abe, Yoshito -- Hino, Tomoya -- Ikeda-Suno, Chiyo -- Kuma, Hiroyuki -- Kang, Dongchon -- Murata, Takeshi -- Hamakubo, Takao -- Cameron, Alexander D -- Kobayashi, Takuya -- Hamasaki, Naotaka -- Iwata, So -- BB/D019516/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT089809/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):680-4. doi: 10.1126/science.aaa4335.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. ; Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. ; Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. ; Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. ; Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-cho, Sasebo, Nagasaki 859-3298, Japan. ; Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. ; Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. ; Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan. ; Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan. ; Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK. ; Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. ; Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO) Human Receptor Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. JST, Research Acceleration Program, Membrane Protein Crystallography Project, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Department of Cell Biology, Kyoto University Faculty of Medicine, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Division of Molecular Biosciences, Membrane Protein Crystallography group, Imperial College London, London SW7 2AZ, UK. Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 0DE, UK. Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0FA, UK. Platform for Drug Discovery, Informatics, and Structural Life Science, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542571" target="_blank"〉PubMed〈/a〉
    Keywords: Anion Exchange Protein 1, Erythrocyte/*chemistry/genetics ; Crystallography, X-Ray ; Disease/genetics ; Escherichia coli Proteins/chemistry ; Humans ; Membrane Transport Proteins/chemistry ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacLean, Evan L -- Hare, Brian -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):280-1. doi: 10.1126/science.aab1200. Epub 2015 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke Canine Cognition Center, Duke University, Durham, NC, USA. Department of Evolutionary Anthropology, Duke University, Durham, NC, USA. ; Duke Canine Cognition Center, Duke University, Durham, NC, USA. Department of Evolutionary Anthropology, Duke University, Durham, NC, USA. Center for Cognitive Neuroscience, Duke University, Durham, NC, USA. b.hare@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*psychology ; *Biological Evolution ; *Bonding, Human-Pet ; *Communication ; Dogs/*psychology ; Female ; *Fixation, Ocular ; Humans ; Oxytocin/*physiology ; Wolves/*psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 May 15;348(6236):744. doi: 10.1126/science.348.6236.744.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beak/*anatomy & histology/embryology ; *Biological Evolution ; Birds/*anatomy & histology/embryology/*genetics ; Bone and Bones/anatomy & histology/embryology ; Fibroblast Growth Factor 8/*genetics ; Fossils ; Hedgehog Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-01-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):220-1. doi: 10.1126/science.347.6219.220.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25593165" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Arthropods/anatomy & histology/classification/physiology ; *Biological Evolution ; *Crustacea/anatomy & histology/classification/physiology ; Fatty Acids, Unsaturated/metabolism ; *Insects/anatomy & histology/classification/physiology ; Juvenile Hormones/metabolism ; Phylogeny ; Respiration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perkins, Sid -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):1431. doi: 10.1126/science.349.6255.1431.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404802" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Dental Enamel ; *Fishes ; Fossils ; Hardness ; *Tooth
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-08-08
    Description: The pathological assembly of Abeta, tau, and alpha-synuclein is at the heart of Alzheimer's and Parkinson's diseases. Extracellular deposits of Abeta and intraneuronal tau inclusions define Alzheimer's disease, whereas intracellular inclusions of alpha-synuclein make up the Lewy pathology of Parkinson's disease. Most cases of disease are sporadic, but some are inherited in a dominant manner. Mutations frequently occur in the genes encoding Abeta, tau, and alpha-synuclein. Overexpression of these mutant proteins can give rise to disease-associated phenotypes. Protein assembly begins in specific regions of the brain during the process of Alzheimer's and Parkinson's diseases, from where it spreads to other areas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goedert, Michel -- U105184291/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):1255555. doi: 10.1126/science.1255555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH, UK. mg@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26250687" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/genetics/*metabolism/pathology ; Amyloid beta-Protein Precursor/genetics/*metabolism ; Brain/metabolism/pathology ; Humans ; Lewy Bodies/metabolism ; Mutation ; Parkinson Disease/genetics/*metabolism/pathology ; Prion Diseases/*metabolism ; Prions/genetics/*metabolism ; alpha-Synuclein/genetics/*metabolism ; tau Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-10-24
    Description: The relationship between microRNA (miRNA) regulation and the specification of behavior is only beginning to be explored. We found that mutation of a single miRNA locus (miR-iab4/iab8) in Drosophila larvae affects the animal's capacity to correct its orientation if turned upside down (self-righting). One of the miRNA targets involved in this behavior is the Hox gene Ultrabithorax, whose derepression in two metameric neurons leads to self-righting defects. In vivo neural activity analysis reveals that these neurons, the self-righting node (SRN), have different activity patterns in wild type and miRNA mutants, whereas thermogenetic manipulation of SRN activity results in changes in self-righting behavior. Our work thus reveals a miRNA-encoded behavior and suggests that other miRNAs might also be involved in behavioral control in Drosophila and other species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Picao-Osorio, Joao -- Johnston, Jamie -- Landgraf, Matthias -- Berni, Jimena -- Alonso, Claudio R -- 092986/Z/Wellcome Trust/United Kingdom -- 098410/Z/12/Z/Wellcome Trust/United Kingdom -- 105568/Z/14/Z/Wellcome Trust/United Kingdom -- BB/I022414/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Nov 13;350(6262):815-20. doi: 10.1126/science.aad0217. Epub 2015 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sussex Neuroscience, School of Life Science, University of Sussex, Brighton BN1 9QG, UK. ; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. ; Sussex Neuroscience, School of Life Science, University of Sussex, Brighton BN1 9QG, UK. c.alonso@sussex.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26494171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; Drosophila Proteins/genetics ; Drosophila melanogaster/genetics/*physiology ; Gene Expression Regulation ; Genetic Loci ; Homeodomain Proteins/genetics ; Larva/genetics/physiology ; MicroRNAs/genetics/*physiology ; Mutation ; Neurons/physiology ; Orientation/*physiology ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-04-04
    Description: Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397586/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397586/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Audergon, Pauline N C B -- Catania, Sandra -- Kagansky, Alexander -- Tong, Pin -- Shukla, Manu -- Pidoux, Alison L -- Allshire, Robin C -- 092076/Wellcome Trust/United Kingdom -- 093852/Wellcome Trust/United Kingdom -- 095021/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):132-5. doi: 10.1126/science.1260638.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK. ; Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK. robin.allshire@ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25838386" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; *Epigenesis, Genetic ; Heterochromatin/metabolism ; Histones/*metabolism ; Lysine/*metabolism ; Methylation ; Methyltransferases/*metabolism ; Mutation ; Nuclear Proteins/genetics ; Protein Processing, Post-Translational/*genetics ; Schizosaccharomyces/*enzymology/*genetics ; Schizosaccharomyces pombe Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-07-25
    Description: Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martill, David M -- Tischlinger, Helmut -- Longrich, Nicholas R -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):416-9. doi: 10.1126/science.aaa9208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK. ; Tannenweg 16, 85134 Stammham, Germany. ; Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206932" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Animals ; *Biological Evolution ; Brazil ; Extinction, Biological ; Extremities/*anatomy & histology ; Fossils ; India ; Lizards/*anatomy & histology ; Phylogeny ; Skull/anatomy & histology ; Snakes/*anatomy & histology/*classification ; South America ; Spine/anatomy & histology ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-08-01
    Description: Obligate parasitic plants in the Orobanchaceae germinate after sensing plant hormones, strigolactones, exuded from host roots. In Arabidopsis thaliana, the alpha/beta-hydrolase D14 acts as a strigolactone receptor that controls shoot branching, whereas its ancestral paralog, KAI2, mediates karrikin-specific germination responses. We observed that KAI2, but not D14, is present at higher copy numbers in parasitic species than in nonparasitic relatives. KAI2 paralogs in parasites are distributed into three phylogenetic clades. The fastest-evolving clade, KAI2d, contains the majority of KAI2 paralogs. Homology models predict that the ligand-binding pockets of KAI2d resemble D14. KAI2d transgenes confer strigolactone-specific germination responses to Arabidopsis thaliana. Thus, the KAI2 paralogs D14 and KAI2d underwent convergent evolution of strigolactone recognition, respectively enabling developmental responses to strigolactones in angiosperms and host detection in parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conn, Caitlin E -- Bythell-Douglas, Rohan -- Neumann, Drexel -- Yoshida, Satoko -- Whittington, Bryan -- Westwood, James H -- Shirasu, Ken -- Bond, Charles S -- Dyer, Kelly A -- Nelson, David C -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):540-3. doi: 10.1126/science.aab1140.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Georgia, Athens, GA 30602, USA. ; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia. ; RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228149" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*metabolism/*parasitology ; Arabidopsis Proteins/*classification/genetics/metabolism ; *Biological Evolution ; Gene Dosage ; Germination ; Heterocyclic Compounds, 1-Ring/*metabolism ; Host-Parasite Interactions ; Hydrolases/*classification/genetics/metabolism ; Lactones/*metabolism ; Orobanchaceae/*enzymology/genetics/growth & development ; Phylogeny ; Plant Growth Regulators/*metabolism ; Plant Roots/metabolism/parasitology ; Plants, Genetically Modified/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, Richard F -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1068-9. doi: 10.1126/science.aaa9217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Anthropology and Division of Earth and Ocean Sciences, Duke University, Durham, NC 27708, USA. richard.kay@duke.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Fossils ; Peru ; Phylogeny ; *Platyrrhini/anatomy & histology/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-01-17
    Description: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries-climate change and biosphere integrity-have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steffen, Will -- Richardson, Katherine -- Rockstrom, Johan -- Cornell, Sarah E -- Fetzer, Ingo -- Bennett, Elena M -- Biggs, Reinette -- Carpenter, Stephen R -- de Vries, Wim -- de Wit, Cynthia A -- Folke, Carl -- Gerten, Dieter -- Heinke, Jens -- Mace, Georgina M -- Persson, Linn M -- Ramanathan, Veerabhadran -- Reyers, Belinda -- Sorlin, Sverker -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):1259855. doi: 10.1126/science.1259855. Epub 2015 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia. will.steffen@anu.edu.au. ; Center for Macroecology, Evolution, and Climate, University of Copenhagen, Natural History Museum of Denmark, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. ; Department of Natural Resource Sciences and McGill School of Environment, McGill University, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Centre for Studies in Complexity, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa. ; Center for Limnology, University of Wisconsin, 680 North Park Street, Madison WI 53706 USA. ; Alterra Wageningen University and Research Centre, P.O. Box 47, 6700AA Wageningen, Netherlands. Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands. ; Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, SE-10405 Stockholm, Sweden. ; Research Domain Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A62, 14473 Potsdam, Germany. ; Research Domain Earth System Analysis, Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A62, 14473 Potsdam, Germany. International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100 Kenya. CSIRO (Commonwealth Scientific and Industrial Research Organization), St. Lucia, QLD 4067, Australia. ; Centre for Biodiversity and Environment Research (CBER), Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK. ; Stockholm Environment Institute, Linnegatan 87D, SE-10451 Stockholm, Sweden. ; Scripps Institution of Oceanography, University of California at San Diego, 8622 Kennel Way, La Jolla, CA 92037 USA. TERI (The Energy and Resources Institute) University, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi 110070, India. ; Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden. Natural Resources and the Environment, CSIR, P.O. Box 320, Stellenbosch 7599, South Africa. ; Division of History of Science, Technology and Environment, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25592418" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Biological Evolution ; *Climate Change ; *Earth (Planet) ; Fresh Water ; Humans ; *Ozone Depletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-04-11
    Description: Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Yali -- Prado-Martinez, Javier -- Sudmant, Peter H -- Narasimhan, Vagheesh -- Ayub, Qasim -- Szpak, Michal -- Frandsen, Peter -- Chen, Yuan -- Yngvadottir, Bryndis -- Cooper, David N -- de Manuel, Marc -- Hernandez-Rodriguez, Jessica -- Lobon, Irene -- Siegismund, Hans R -- Pagani, Luca -- Quail, Michael A -- Hvilsom, Christina -- Mudakikwa, Antoine -- Eichler, Evan E -- Cranfield, Michael R -- Marques-Bonet, Tomas -- Tyler-Smith, Chris -- Scally, Aylwyn -- 098051/Wellcome Trust/United Kingdom -- 099769/Z/12/Z/Wellcome Trust/United Kingdom -- 260372/European Research Council/International -- HG002385/HG/NHGRI NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):242-5. doi: 10.1126/science.aaa3952. Epub 2015 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. ; Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigacion Biomedica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. ; Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark. ; Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. Department of Biological, Geological and Environmental Sciences, University of Bologna, 40134 Bologna, Italy. ; Research and Conservation, Copenhagen Zoo, DK-2000 Frederiksberg, Denmark. ; Rwanda Development Board, KG 9 Avenue, Kigali, Rwanda. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, Seattle, WA 91895, USA. ; Gorilla Doctors, Karen C. Drayer Wildlife Health Center, University of California, Davis, CA 95616, USA. ; Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigacion Biomedica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain. Centro Nacional de Analisis Genomico (Parc Cientific de Barcelona), Baldiri Reixac 4, 08028 Barcelona, Spain. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. cts@sanger.ac.uk aos21@cam.ac.uk. ; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. cts@sanger.ac.uk aos21@cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859046" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biological Evolution ; DNA Copy Number Variations ; Democratic Republic of the Congo ; Endangered Species ; Female ; *Genetic Variation ; *Genome ; Gorilla gorilla/classification/*genetics/physiology ; Homozygote ; *Inbreeding ; Linkage Disequilibrium ; Male ; Mutation ; Population Dynamics ; Rwanda ; Selection, Genetic ; Sequence Analysis, DNA ; Species Specificity ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-04-18
    Description: Many top consumers in today's oceans are marine tetrapods, a collection of lineages independently derived from terrestrial ancestors. The fossil record illuminates their transitions from land to sea, yet these initial invasions account for a small proportion of their evolutionary history. We review the history of marine invasions that drove major changes in anatomy, physiology, and ecology over more than 250 million years. Many innovations evolved convergently in multiple clades, whereas others are unique to individual lineages. The evolutionary arcs of these ecologically important clades are framed against the backdrop of mass extinctions and regime shifts in ocean ecosystems. Past and present human disruptions to marine tetrapods, with cascading impacts on marine ecosystems, underscore the need to link macroecology with evolutionary change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelley, Neil P -- Pyenson, Nicholas D -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):aaa3716. doi: 10.1126/science.aaa3716.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA. Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA. kelleynp@si.edu. ; Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA. Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883362" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms/*classification ; *Biological Evolution ; Ecosystem ; Fossils ; *Introduced Species ; Oceans and Seas ; Vertebrates/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...