ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 10 (1996), S. 203-220 
    ISSN: 1573-269X
    Keywords: Nonlinear vibrating system ; parametric excitation ; bifurcation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper summarizes the authors' research on local bifurcation theory of nonlinear systems with parametric excitation since 1986. The paper is divided into three parts. The first one is the local bifurcation problem of nonlinear systems with parametric excitation in cases of fundamental harmonic, subharmonic and superharmonic resonance. The second one is the experiment investigation of local bifurcation solutions in nonlinear systems with parametric excitation. The third one is the universal unfolding study of periodic bifurcation solutions in the nonlinear Hill system, where the influence of every physical parameter on the periodic bifurcation solution is discussed in detail and all the results may be applied to engineering.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-269X
    Keywords: Nonstationary ; nonplanar vibration ; parametric excitation ; continuous system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The purpose of this paper is to study the nonstationary vibration of a string with time-varying length and a mass-spring system attached at the lower end. The string is hung vertically and excited sinusoidally by a horizontal displacement at its upper end. The mass is supported by a guide spring horizontally and has two-degrees-of-freedom, vertical and horizontal. It is shown analytically that axial velocity of the string influences the peak amplitude of the string vibration at the passage through resonances. Moreover, it is shown numerically that the amplitudes of both the string and the mass vibrations depend on the sign of the axial velocity, when the natural frequency of the mass-spring system is close to the frequency of the excitation. The above two theoretical results are confirmed experimentally with a simple experimental setup.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-269X
    Keywords: chaos ; vibrations ; self-excited system ; parametric excitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Vibration analysis of a non-linear parametrically andself-excited system of two degrees of freedom was carried out. The modelcontains two van der Pol oscillators coupled by a linear spring with a aperiodically changing stiffness of the Mathieu type. By means of amultiple-scales method, the existence and stability of periodicsolutions close to the main parametric resonances have beeninvestigated. Bifurcations of the system and regions of chaoticsolutions have been found. The possibility of the appearance ofhyperchaos has also been discussed and an example of such solution hasbeen shown.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-269X
    Keywords: vibro-impact systems ; non-smooth coordinate transformations ; parametric excitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper examines the dynamic behavior of a double pendulummodel with impact interaction. One of the masses of the two pendulumsmay experience impacts against absolutely rigid container wallssupported by an elastic system forming an inverted pendulum restrainedby a torsional elastic spring. The system equations of motion arewritten in terms of a non-smooth set of coordinates proposed originallyby Zhuravlev. The advantage of non-smooth coordinates is that theyeliminate impact constraints. In terms of the new coordinates, thepotential energy field takes a cell-wise non-local structure, and theimpact events are treated geometrically as a crossing of boundariesbetween the cells. Based on a geometrical treatment of the problem,essential physical system parameters are established. It is found thatunder resonance parametric conditions of the linear normal modes thesystem's response can be either bounded or unbounded, depending on thesystem's parameters. The ability of the system to absorb energy from anexternal source essentially depends on the modal inclination angle,which is related to the principal coordinates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-269X
    Keywords: Ship dynamics ; nonlinear oscillations ; parametric excitation ; effects of bending and torsional elasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract An enhanced mechanical model for simulating ship body oscillations and both the induced fluxural and twisting vibrations of the hull in the case of longitudinal seas is presented. The onset of parametric rolling, which may result from nonlinearly coupled heave-pitch-roll motions, and the effects of bending and torsional elasticity of the hull are considered in detail. It is shown that in the above sea conditions the flexural and/or twisting vibrations are likely to occur under a mechanism similar to that of parametric rolling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 8 (1995), S. 197-211 
    ISSN: 1573-269X
    Keywords: Heave-roll coupling ; parametric excitation ; bifurcation ; instability region
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract A nonlinear model for simulating the heave-roll motions of ships in following waves is presented. The parametric excitation is modeled by a Hill's type equation, instead of the conventional Mathieu's equation. The model includes not only the linear but also the quadratic coupling term. Instability conditions for parametrically excited rolling motions are derived using the harmonic balance method. The results are verified by numerical analyses. The effects of including the quadratic coupling term on the instability conditions and nonlinear responses are studied. The complex dynamic behaviour of the coupled system in the various instability regions is also investigated. Bifurcations of the flip, fold and pitchfork types are observed in the Poincaré mapping of the numerically simulated responses. Chaotic motions leading to boundary crises and inevitable capsize are also reported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 10 (1996), S. 333-357 
    ISSN: 1573-269X
    Keywords: Pipes ; parametric excitation ; nonlinearity ; chaos ; multiple time scales ; harmonic balancing ; stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Chaotic motions of a simply supported nonlinear pipe conveying fluid with harmonie velocity fluetuations are investigated. The motions are investigated in two flow velocity regimes, one below and above the critical velocity for divergence. Analyses are carried out taking into account single mode and two mode approximations in the neighbourhood of fundamental resonance. The amplitude of the harmonic velocity perturbation is considered as the control parameter. Both period doubling sequence and a sudden transition to chaos of an asymmetric period 2 motion are observed. Above the critical velocity chaos is explained in terms of periodic motion about the equilibrium point shifting to another equilibrium point through a saddle point. Phase plane trajectories, Poincaré maps and time histories are plotted giving the nature of motion. Both single and two mode approximations essentially give the same qualitative behaviour. The stability limits of trivial and nontrivial solutions are obtained by the multiple time scale method and harmonic balance method which are in very good agreement with the numerical results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-269X
    Keywords: Beams ; nonlinear bending-torsion dynamics ; parametric excitation ; stochastic stability ; Monte Carlo simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The purpose of this study is to understand the main differences between the deterministic and random response characteristics of an inextensible cantilever beam (with a tip mass) in the neighborhood of combination parametric resonance. The excitation is applied in the plane of largest rigidity such that the bending and torsion modes are cross-coupled through the excitation. In the absence of excitation, the two modes are also coupled due to inertia nonlinearities. For sinusoidal parametric excitation, the beam experiences instability in the neighborhood of the combination parametric resonance of the summed type, i.e., when the excitation frequency is in the neighborhood of the sum of the first bending and torsion natural frequencies. The dependence of the response amplitude on the excitation level reveals three distinct regions: nearly linear behavior, jump phenomena, and energy transfer. In the absence of nonlinear coupling, the stochastic stability boundaries are obtained in terms of sample Lyapunov exponent. The response statistics are estimated using Monte Carlo simulation, and measured experimentally. The excitation center frequency is selected to be close to the sum of the bending and torsion mode frequencies. The beam is found to experience a single response, two possible responses, or non-stationary responses, depending on excitation level. Experimentally, it is possible to obtain two different responses for the same excitation level by providing a small perturbation to the beam during the test.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-269X
    Keywords: parametric excitation ; non-linear complex ; stability ; jump phenomena
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The effects of parametric excitation on a traveling beam, both with and without an external harmonic excitation, have been studied including the non-linear terms. Non-linear, complex normal modes have been used for the response analysis. Detailed numerical results are presented to show the effects of non-linearity on the stability of the parametrically excited system. In the presence of both parametric and external harmonic excitations, the response characteristics are found to be similar to that of a Duffing oscillator. The results are sensitive to the relative strengths of and the phase difference between the two forms of excitations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-269X
    Keywords: Nonlinear dynamic systems ; parametric excitation ; numerical integration ; Picard iteration ; Chebyshev polynomials ; periodic and aperiodic solutions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract A new computational scheme using Chebyshev polynomials is proposed for the numerical solution of parametrically excited nonlinear systems. The state vector and the periodic coefficients are expanded in Chebyshev polynomials and an integral equation suitable for a Picard-type iteration is formulated. A Chebyshev collocation is applied to the integral with the nonlinearities reducing the problem to the solution of a set of linear algebraic equations in each iteration. The method is equally applicable for nonlinear systems which are represented in state-space form or by a set of second-order differential equations. The proposed technique is found to duplicate the periodic, multi-periodic and chaotic solutions of a parametrically excited system obtained previously using the conventional numerical integration schemes with comparable CPU times. The technique does not require the inversion of the mass matrix in the case of multi degree-of-freedom systems. The present method is also shown to offer significant computational conveniences over the conventional numerical integration routines when used in a scheme for the direct determination of periodic solutions. Of course, the technique is also applicable to non-parametrically excited nonlinear systems as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...