ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 1 (1990), S. 39-61 
    ISSN: 1573-269X
    Keywords: structural dynamics ; internal resonance ; modulation equations ; Hopf bifurcations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study the planar dynamic response of a flexible L-shaped beam-mass structure with a two-to-one internal resonance to a primary resonance. The structure is subjected to low excitation (mili g) levels and the resulting nonlinear motions are examined. The Lagrangian for weakly nonlinear motions of the undamped structure is formulated and time averaged over the period of the primary oscillation, leading to an autonomous system of equations governing the amplitudes and phases of the modes involved in the internal resonance. Later, modal damping is assumed and modal-damping coefficients, determined from experiments, are included in the analytical model. The locations of the saddle-node and Hopf bifurcations predicted by the analysis are in good agreement, respectively, with the jumps and transitions from periodic to quasi-periodic motions observed in the experiments. The current study is relevant to the dynamics and modeling of other structural systems as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 1 (1990), S. 91-116 
    ISSN: 1573-269X
    Keywords: internal resonance ; random vibrations ; non-Gaussian closure experiments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper presents the experimental results of random excitation of a nonlinear two-degree-of-freedom system in the neighborhood of internal resonance. The random signals of the excitation and response coordinates are processed to estimate the mean squares, autocorrelation functions, power spectral densities, and probability density functions. The results are qualitatively compared with those predicted by the Fokker-Planck equation together with a non-Gaussian closure scheme. The effects of system damping ratios, nonlinear coupling parameter, internal detuning ratio, and excitation spectral density level are considered in both studies except the effect of damping ratios is not considered in the experimental investigation. Both studies reveal similar dynamic features such as autoparametric absorber effect and stochastic instability of the coupled system. The experimental results show that the autocorrelation function of the coupled system has the feature of ultra narrow band process and degenerates to a periodic one as the internal detuning departs from the exact internal resonance condition. The measured probability density functions of the response of the main system suggests that the Gaussian representation is sufticient as long as the excitation level is relatively low in the neighborhood of the system internal resonance condition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-269X
    Keywords: Random excitation ; nonlinear inertia ; internal resonance ; Monte Carlo testing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The primary objective of this paper is to examine the random response characteristics of coupled nonlinear oscillators in the presence of single and simultaneous internal resonances. A model of two coupled beams with nonlinear inertia interaction is considered. The primary beam is directly excited by a random support motion, while the coupled beam is indirectly excited through autoparametric coupling and parametric excitation. For a single one-to-two internal resonance, we used Gaussian and non-Gaussian closures, Monte Carlo simulation, and experimental testing to predict and measure response statistics and stochastic bifurcation in the mean square. The mean square stability boundaries of the coupled beam equilibrium position are obtained by a Gaussian closure scheme. The stochastic bifurcation of the coupled beam is predicted theoretically and experimentally. The stochastic bifurcation predicted by non-Gaussian closure is found to take place at a lower excitation level than the one predicted by Gaussian closure and Monte Carlo simulation. It is also found that above a certain excitation level, the solution obtained by non-Gaussian closure reveals numerical instability at much lower excitation levels than those obtained by Gaussian and Monte Carlo approaches. The experimental observations reveal that the coupled beam does not reach a stationary state, as reflected by the time evolution of the mean square response. For the case of simultaneous internal resonances, both Gaussian and non-Gaussian closures fail to predict useful results, and attention is focused on Monte Carlo simulation and experimental testing. The effects of nonlinear coupling parameters, internal detuning ratios, and excitation spectral density level are considered in both investigations. It is found that both studies reveal common nonlinear features such as bifurcations in the mean square responses of the coupled beam and modal interaction in the neighborhood of internal resonances. Furthermore, there is an upper limit for the excitation level above which the system experiences unbounded response in the neighborhood of simultaneous internal resonances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-269X
    Keywords: Self-excited system ; coupled oscillators ; internal resonance ; phase drift
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Free vibration of a two degree of freedom weakly nonlinear oscillator is investigated. The type of nonlinearity considered is symmetric, it involves displacement as well as velocity terms and gives rise to self-excited oscillations in many engineering applications. After presenting the equations of motion in a general form, a perturbation methodology is applied for the case of 1:3 internal resonance. This yields a set of four slow-flow nonlinear equations, governing the amplitudes and phases of approximate motions of the system. It is then shown that these equations possess three distinct types of solutions, corresponding to trivial, single-mode and mixed-mode response of the system. The stability analysis of all these solutions is also performed. Next, numerical results are presented by applying this analysis to a specific practical example. Response diagrams are obtained for various combinations of the system parameters, in an effort to provide a complete picture of the dynamics and understand the transition from conditions of 1:3 internal resonance to non-resonant response. Emphasis is placed on identifying the effect of the linear damping, the frequency detuning and the stiffness nonlinearity parameters. Finally, the predictions of the approximate analysis are confirmed and extended further by direct integration of the averaged equations. This reveals the existence of other regular and irregular motions and illustrates the transition from phase-locked to drift response, which takes place through a Hopf bifurcation and a homoclinic explosion of the averaged equations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-269X
    Keywords: Beam carrying a moving mass ; internal resonance ; kinematic nonlinearities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The motion of a flexible cantilever beam carrying a moving spring-mass system is investigated. The beam is assumed to be an Euler–Bernouli beam. The motion of the system is described by a set of two nonlinear coupled partial differential equations where the coupling terms have to be evaluated at the position of the mass. The nonlinearities arise due to the coupling between the mass and the beam. Due to the nonlinearities the system exhibits internal resonance which is investigated in this work. The equations of motion are solved numerically using the Rayleigh–Ritz method and an automatic ODE solver. An approximate solution using the perturbation method of multiple scales is also obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-269X
    Keywords: Widely separated natural frequencies ; energy transfer ; internal resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract An analytical and experimental investigation into the response of a nonlinear continuous system with widely separated natural frequencies is presented. The system investigated is a thin, slightly curved, isotropic, flexible cantilever beam mounted vertically. In the experiments, for certain vertical harmonic base excitations, we observed that the response consisted of the first, third, and fourth modes. In these cases, the modulation frequency of the amplitudes and phases of the third and fourth modes was equal to the response frequency of the first mode. Subsequently, we developed an analytical model to explain the interactions between the widely separated modes observed in the experiments. We used a three-mode Galerkin projection of the partial-differential equation governing a thin, isotropic, inextensional beam and obtained a sixth-order nonautonomous system of equations by using an unconventional coordinate transformation. In the analytical model, we used experimentally determined damping coefficients. From this nonautonomous system, we obtained a first approximation of the response by using the method of averaging. The analytically predicted responses and bifurcation diagrams show good qualitative agreement with the experimental observations. The current study brings to light a new type of nonlinear motion not reported before in the literature and should be of relevance to many structural and mechanical systems. In this motion, a static response of a low-frequency mode interacts with the dynamic response of two high-frequency modes. This motion loses stability, resulting in oscillations of the low-frequency mode accompanied by a modulation of the amplitudes and phases of the high-frequency modes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-269X
    Keywords: Cables ; internal resonance ; perturbation analysis ; quasi-periodic response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The near resonant response of suspended, elastic cables driven by planar excitation is investigated using a three degree-of-freedom model. The model captures the interaction of a symmetric in-plane mode with two out-of-plane modes. The modes are coupled through quadratic and cubic nonlinearities arising from nonlinear cable stretching. For particular magnitudes of equilibrium curvature, the natural frequency of the in-plane mode is simultaneously commensurable with the natural frequencies of the two out-of-plane modes in 1:1 and 2:1 ratios. A second nonlinear order perturbation analysis is used to determine the existence and stability of four classes of periodic solutions. The perturbation solutions are compared with results obtained by numerically integrating the equations of motion. Furthermore, numerical simulations demonstrate the existence of quasiperiodic responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 12 (1997), S. 129-154 
    ISSN: 1573-269X
    Keywords: Three-to-one resonance ; internal resonance ; beam vibrations ; bifurcation ; crises
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The nonlinear planar response of a hinged-clamped beam to a primary excitation of either its first mode or its second mode is investigated. The analysis accounts for mid-plane stretching, a static axial load and a restraining spring at one end, and modal damping. For a range of axial loads, the second natural frequency is approximately three times the first natural frequency and hence the first and second modes may interact due to a three-to-one internal resonance. The method of multiple scales is used to attack directly the governing nonlinear partial-differential equation and derive two sets of four first-order nonlinear ordinary-differential equations describing the modulation of the amplitudes and phases of the first two modes in the case of primary resonance of either the first or the second mode. Periodic motions and periodically and chaotically modulated motions of the beam are determined by investigating the equilibrium and dynamic solutions of the modulation equations. For the case of primary resonance of the first mode, only two-mode solutions are possible, whereas for the case of primary resonance of the second mode, single- and two-mode solutions are possible. The two-mode equilibrium solutions of the modulation equations may undergo a supercritical or a subcritical Hopf bifurcation, depending on the magnitude of the axial load. A shooting technique is used to calculate limit cycles of the modulation equations and Floquet theory is used to ascertain their stability. The limit cycles correspond to periodically modulated motions of the beam. The limit cycles are found to undergo cyclic-fold bifurcations and period-doubling bifurcations, leading to chaos. The chaotic attractors may undergo boundary crises, resulting in the destruction of the chaotic attractors and their basins of attraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 20 (1999), S. 283-295 
    ISSN: 1573-269X
    Keywords: vibration absorber ; saturation ; internal resonance ; bifurcations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study the dynamics of a nonlinear active vibration absorber. We consider a plant model possessing curvature and inertia nonlinearities and introduce a second-order absorber that is coupled with the plant through user-defined cubic nonlinearities. When the plant is excited at primary resonance and the absorber frequency is approximately equal to the plant natural frequency, we show the existence of a saturation phenomenon. As the forcing amplitude is increased beyond a certain threshold, the response amplitude of the directly excited mode (plant) remains constant, while the response amplitude of the indirectly excited mode (absorber) increases. We obtain an approximate solution to the governing equations using the method of multiple scales and show that the system possesses two possible saturation values. Using numerical techniques, we perform stability analyses and demonstrate that the system exhibits complicated dynamics, such as Hopf bifurcations, intermittency, and chaotic responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-269X
    Keywords: internal resonance ; homoclinic orbits ; Melnikov function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In this work we study the existence of Silnikov homoclinicorbits in the averaged equations representing the modal interactionsbetween two modes with zero-to-one internal resonance. The fast mode isparametrically excited near its resonance frequency by a periodicforcing. The slow mode is coupled to the fast mode when the amplitude ofthe fast mode reaches a critical value so that the equilibrium of theslow mode loses stability. Using the analytical solutions of anunperturbed integrable Hamiltonian system, we evaluate a generalizedMelnikov function which measures the separation of the stable and theunstable manifolds of an annulus containing the resonance band of thefast mode. This Melnikov function is used together with the informationof the resonances of the fast mode to predict the region of physicalparameters for the existence of Silnikov homoclinic orbits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...