ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 1 (1990), S. 91-116 
    ISSN: 1573-269X
    Keywords: internal resonance ; random vibrations ; non-Gaussian closure experiments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper presents the experimental results of random excitation of a nonlinear two-degree-of-freedom system in the neighborhood of internal resonance. The random signals of the excitation and response coordinates are processed to estimate the mean squares, autocorrelation functions, power spectral densities, and probability density functions. The results are qualitatively compared with those predicted by the Fokker-Planck equation together with a non-Gaussian closure scheme. The effects of system damping ratios, nonlinear coupling parameter, internal detuning ratio, and excitation spectral density level are considered in both studies except the effect of damping ratios is not considered in the experimental investigation. Both studies reveal similar dynamic features such as autoparametric absorber effect and stochastic instability of the coupled system. The experimental results show that the autocorrelation function of the coupled system has the feature of ultra narrow band process and degenerates to a periodic one as the internal detuning departs from the exact internal resonance condition. The measured probability density functions of the response of the main system suggests that the Gaussian representation is sufticient as long as the excitation level is relatively low in the neighborhood of the system internal resonance condition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-269X
    Keywords: Hopf bifurcation ; multiple scales ; limit cycles ; internal resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study motions near a Hopf bifurcation of a representative nonconservative four-dimensional autonomous system with quadratic nonlinearities. Special cases of the four-dimensional system represent the envelope equations that govern the amplitudes and phases of the modes of an internally resonant structure subjected to resonant excitations. Using the method of multiple scales, we reduce the Hopf bifurcation problem to two differential equations for the amplitude and phase of the bifurcating cyclic solutions. Constant solutions of these equations provide asymptotic expansions for the frequency and amplitude of the bifurcating limit cycle. The stability of the constant solutions determines the nature of the bifurcation (i.e., subcritical or supercritical). For different choices of the control parameter, the range of validity of the analytical approximation is ascertained using numerical simulations. The perturbation analysis and discussions are also pertinent to other autonomous systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-269X
    Keywords: Multibody dynamics ; nonlinear vibration ; internal resonance ; energy balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper presents the ground-work of implementing the multibody dynamics codes to analyzing nonlinear coupled oscillators. The recent developments of the multibody dynamics have resulted in several computer codes that can handle large systems of differential and algebraic equations (DAE). However, these codes cannot be used in their current format without appropriate modifications. According to multibody dynamics theory, the differential equations of motion are linear in the acceleration, and the constraints are appended into the equations of motion through Lagrange's multipliers. This formulation should be able to predict the nonlinear phenomena established by the nonlinear vibration theory. This can be achieved only if the constraint algebraic equations are modified to include all the system kinematic nonlinearities. This modification is accomplished by considering secondary nonlinear displacements which are ignored in all current codes. The resulting set of DAE are solved by the Gear stiff integrator. The study also introduced the concept of constrained flexibility and uses an instantaneous energy checking function to improve integration accuracy in the numerical scheme. The general energy balance is a single scalar equation containing all the energy component contributions. The DAE solution is then compared with the solution predicted by the nonlinear vibration theory. It also establishes new foundation for the use of multibody dynamics codes in nonlinear vibration problems. It is found that the simulation CPU time is much longer than the simulation of the original equations of the system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 1 (1990), S. 39-61 
    ISSN: 1573-269X
    Keywords: structural dynamics ; internal resonance ; modulation equations ; Hopf bifurcations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study the planar dynamic response of a flexible L-shaped beam-mass structure with a two-to-one internal resonance to a primary resonance. The structure is subjected to low excitation (mili g) levels and the resulting nonlinear motions are examined. The Lagrangian for weakly nonlinear motions of the undamped structure is formulated and time averaged over the period of the primary oscillation, leading to an autonomous system of equations governing the amplitudes and phases of the modes involved in the internal resonance. Later, modal damping is assumed and modal-damping coefficients, determined from experiments, are included in the analytical model. The locations of the saddle-node and Hopf bifurcations predicted by the analysis are in good agreement, respectively, with the jumps and transitions from periodic to quasi-periodic motions observed in the experiments. The current study is relevant to the dynamics and modeling of other structural systems as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-269X
    Keywords: Nonlinear oscillations ; buckled beams ; internal resonance ; multifurcation ; multiple scales ; numerical simulation ; experimental results
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The nonlinear response of an initially buckled beam in the neighborhood of 1:1 internal resonance is investigated analytically, numerically, and experimentally. The method of multiple time scales is applied to derive the equations in amplitudes and phase angles. Within a small range of the internal detuning parameter, the first mode; which is externally excited, is found to transfer energy to the second mode. Outside this region, the response is governed by a unimodal response of the first mode. Stability boundaries of the unimodal response are determined in terms of the excitation level, and internal and external detuning parameters. Boundaries separating unimodal from mixed mode responses are obtained in terms of the excitation and internal detuning parameters. Stationary and non-stationary solutions are found to coexist in the case of mixed mode response. For the case of non-stationary response, the modulation of the amplitude depends on the integration increment such that the motion can be periodically or chaotically modulated for a choice of different integration increments. The results obtained by multiple time scales are qualitatively compared with those obtained by numerical simulation of the original equations of motion and by experimental measurements. Both numerical integration and experimental results reveal the occurrence of multifurcation, escaping from one well to the other in an irregular manner. and chaotic motion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...