ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of the history of biology 32 (1999), S. 133-162 
    ISSN: 1573-0387
    Keywords: McClintock ; Barbara ; maize ; corn ; genetics ; transposable elements ; controlling elements ; gene expression regulation ; women scientists ; development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , History
    Notes: Abstract In the standard narrative of her life, Barbara McClintock discovered genetic transposition in the 1940s but no one believed her. She was ignored until molecular biologists of the 1970s “rediscovered” transposition and vindicated her heretical discovery. New archival documents, as well as interviews and close reading of published papers, belie this narrative. Transposition was accepted immediately by both maize and bacterial geneticists. Maize geneticists confirmed it repeatedly in the early 1950s and by the late 1950s it was considered a classic discovery. But for McClintock, movable elements were part of an elaborate system of genetic control that she hypothesized to explain development and differentiation. This theory was highly speculative and was not widely accepted, even by those who had discovered transposition independently. When Jacob and Monod presented their alternative model for gene regulation, the operon, her controller argument was discarded as incorrect. Transposition, however, was soon discovered in microorganisms and by the late 1970s was recognized as a phenomenon of biomedical importance. For McClintock, the award of the 1983 Nobel Prize to her for the discovery of movable genetic elements, long treated as a legitimation, may well have been bittersweet. This new look at McClintock's experiments and theory has implications for the intellectual history of biology, the social history of American genetics, and McClintock's role in the historiography of women in science.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of the history of biology 33 (2000), S. 425-455 
    ISSN: 1573-0387
    Keywords: Charles Darwin ; development ; externalism ; generation ; heredity ; Pangenesis ; nineteenth century ; transmission ; variation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , History
    Notes: Abstract Darwin’s ideas on variation, heredity, and development differ significantly from twentieth-century views. First, Darwin held that environmental changes, acting either on the reproductive organs or the body, were necessary to generate variation. Second, heredity was a developmental, not a transmissional, process; variation was a change in the developmental process of change.An analysis of Darwin’s elaboration and modification of these two positions from his early notebooks (1836–1844) to the last edition of the Variation of Animals and Plants Under Domestication(1875) complements previous Darwin scholarship on these issues. Included in this analysis is a description of the way Darwin employed the distinction between transmission and development, as well as the conceptual relationship he saw between heredity and variation. This paper is part of a larger project comparing commitments regarding variation during the latter half of the nineteenth century.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...