Publication Date:
2013-08-31

Description:
This report develops: (1) a refined approximate theory for the static and dynamic analyses of finite, laminated, composite, circular cylindrical shells with general boundary conditions; (2) an exact three-dimensional analysis of simply supported, laminated, composite, circular cylindrical shells, and (3) a thin-shell theory for laminated, composite, circular cylindrical shells. In the refined approximate theory the displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and transverse normal stress are included. A variational approach is followed to obtain the governing differential equations and boundary conditions. A general solution of the governing differential equations is also presented. The results obtained by using the refined approximate theory and the thin-shell theory are compared with the exact results for the case of free vibrations of simply supported, laminated, composite, circular cylindrical shells. The refined approximate theory is very accurate, even for thick shells with short nodal distances, whereas thin-shell theory is reasonably accurate only for thin shells at moderate nodal distances and wave number less than 2.

Keywords:
STRUCTURAL MECHANICS

Type:
NASA-TR-R-412
,
L-8828

Format:
application/pdf

Permalink