ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • stability  (20)
  • Nonlinear dynamics  (8)
  • 1
    ISSN: 1573-269X
    Keywords: Nonlinear dynamics ; internal resonance ; parametric vibrations ; quadratic nonlinearities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In the study of nonlinear vibrations of planar frames and beams with infinitesimal displacements and strains, the influence of the static displacements resulting from gravity effect and other conservative loads is usually disregarded. This paper discusses the effect of the deformed equilibrium configuration on the nonlinear vibrations through the analysis of two planar structures. Both structures present a two-to-one internal resonance and a primary response of the second mode. The equations of motion are reduced to two degrees of freedom and contain all geometrical and inertial nonlinear terms. These equations are derived by modal superposition with additional subsidiary conditions. In the two cases analyzed, the deformed equilibrium configuration virtually coincides with the undeformed configuration. Also, 2% is the maximum difference presented by the first two lower frequencies. The modes are practically coincident for the deformed and undeformed configurations. Nevertheless, the analysis of the frequency response curves clearly shows that the effect of the deformed equilibrium configuration produces a significant translation along the detuning factor axis. Such effect is even more important in the amplitude response curves. The phenomena represented by these curves may be distinct for the same excitation amplitude.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-269X
    Keywords: Nonlinear dynamics ; hysteretic oscillators ; periodic and non-periodic orbits
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The equations governing the response of hysteretic systems to sinusoidal forces, which are memory dependent in the classical phase space, can be given as a vector field over a suitable phase space with increased dimension. Hence, the stationary response can be studied with the aids of classical tools of nonlinear dynamics, as for example the Poincaré map. The particular system studied in the paper, based on hysteretic Masing rules, allows the reduction of the dimension of the phase space and the implementation of efficient algorithms. The paper summarises results on one degree of freedom systems and concentrates on a two degree of freedom system as the prototype of many degree of freedom systems. This system has been chosen to be in 1:3 internal resonance situation. Depending on the energy dissipation of the elements restoring force, the response may be more or less complex. The periodic response, described by frequency response curves for various levels of excitation intensity, is highly complex. The coupling produces a strong modification of the response around the first mode resonance, whereas it is negligible around the second mode. Quasi-periodic motion starts bifurcating for sufficiently high values of the excitation intensity; windows of periodic motions are embedded in the dominion of the quasi-periodic motion, as consequence of a locking frequency phenomenon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 19 (1999), S. 135-158 
    ISSN: 1573-269X
    Keywords: perturbation methods ; higher-order approximations ; dynamical systems ; codimension ; stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Higher-order multiple-scale methods for general multiparameter mechanical systems are studied. The role played by the control and imperfection parameters in deriving the perturbative equations is highlighted. The definition of the codimension of the problem, borrowed from the bifurcation theory, is extended to general systems, excited either externally or parametrically. The concept of a reduced dynamical system is then invoked. Different approaches followed in the literature to deal with reconstituted amplitude equations are discussed, both in the search for steady-state solutions and in the analysis of stability. Four classes of methods are considered, based on the consistency or inconsistency of the approach, and on the completeness or incompleteness of the terms retained in the analysis. The four methods are critically compared and general conclusions drawn. Finally, three examples are illustrated to corroborate the findings and to show the quantitative differences between the various approaches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 19 (1999), S. 173-193 
    ISSN: 1573-269X
    Keywords: fluid conveying pipes ; high-frequency pulsating fluid ; separation of slow and fast motion ; stability ; nonlinear dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios. An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component is shown to affect the nonlinear behavior of the system, e.g. bifurcation types can change from supercritical to subcritical, creating several coexisting stable solutions and also anti-symmetrical flutter may appear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 19 (1999), S. 313-332 
    ISSN: 1573-269X
    Keywords: double pendulum system ; double Hopf bifurcation ; stability ; chaos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract A double pendulum system is studied for analyzing the dynamic behaviour near a critical point characterized by nonsemisimple 1:1 resonance. Based on normal form theory, it is shown that two phase-locked periodic solutions may bifurcate from an initial equilibrium, one of them is unstable and the other may be stable for certain values of parameters. A secondary bifurcation from the stable periodic solution yields a family of quasi-periodic solutions lying on a two-dimensional torus. Further cascading bifurcations from the quasi-periodic motions lead to two chaoses via a period-doubling route. It is shown that all the solutions and chaotic motions are obtained under positive damping.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-269X
    Keywords: Nonlinear dynamics ; control structure interaction ; multibody dynamics ; finite element method ; Lagrangian dynamics ; inverse dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-269X
    Keywords: Periodic solutions ; stability ; local bifurcations ; Fourier series
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper explores the application of the method of variable-coefficient harmonic balance to nonautonomous nonlinear equations of the form XsF(X, t:λ), and in particular, a one-degree-of-freedom nonlinear oscillator equation describing escape from a cubic potential well. Each component of the solution, X(t), is expressed as a truncated Fourier series of superharmonics, subharmonics and ultrasubharmonics. Use is then made of symbolic manipulation in order to arrange the oscillator equation as a Fourier series and its coefficient are evaluated in the traditional way. The time-dependent coefficients permit the construction of a set of amplitude evolution equations with corresponding stability criteria. The technique enables detection of local bifurcations, such as saddle-node folds, period doubling flips, and parts of the Feigenbaum cascade. This representation of the periodic solution leads to local bifurcations being associated with a term in the Fourier series and, in particular, the onset of a period doubled solution can be detected by a series of superharmonics only. Its validity is such that control space bifurcation diagrams can be obtained with reasonable accuracy and large reductions in computational expense.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-269X
    Keywords: Regularization ; stability ; constrained multibody systems ; dynamics of multibody systems ; non-holonomic ; singularity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In the analysis of multibody dynamics, we are often required to deal with singularity problems where the constraint Jacobian matrix may become less than full rank at some instantancous configurations. This creates numerical instability which will affect the performance of the mechanical system. A modification procedure of the constraints when they vanish or become linearly dependent is proposed to regularize the dynamics of the system. A distinction between the asymptotic stability due to the representation of the constraints (at the velocity and acceleration level), and the one due to the singularity is discussed in full in this paper. It is shown that Baumgarte technique could be extended to accommodate the representation of the constraints in the neighborhood of singularity. A two link planar manipulator undergoing large motion and passing through a singular configuration is used to illustrate the proposed stability technique.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 10 (1996), S. 333-357 
    ISSN: 1573-269X
    Keywords: Pipes ; parametric excitation ; nonlinearity ; chaos ; multiple time scales ; harmonic balancing ; stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Chaotic motions of a simply supported nonlinear pipe conveying fluid with harmonie velocity fluetuations are investigated. The motions are investigated in two flow velocity regimes, one below and above the critical velocity for divergence. Analyses are carried out taking into account single mode and two mode approximations in the neighbourhood of fundamental resonance. The amplitude of the harmonic velocity perturbation is considered as the control parameter. Both period doubling sequence and a sudden transition to chaos of an asymmetric period 2 motion are observed. Above the critical velocity chaos is explained in terms of periodic motion about the equilibrium point shifting to another equilibrium point through a saddle point. Phase plane trajectories, Poincaré maps and time histories are plotted giving the nature of motion. Both single and two mode approximations essentially give the same qualitative behaviour. The stability limits of trivial and nontrivial solutions are obtained by the multiple time scale method and harmonic balance method which are in very good agreement with the numerical results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-269X
    Keywords: Perturbation methods ; stability ; bifurcation ; codimension two ; periodic and quasi-periodic solutions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract It is shown that the logical bases of the static perturbation method, which is currently used in static bifurcation analysis, can also be applied to dynamic bifurcations. A two-time version of the Lindstedt–Poincaré Method and the Multiple Scale Method are employed to analyze a bifurcation problem of codimension two. It is found that the Multiple Scale Method furnishes, in a straightforward way, amplitude modulation equations equal to normal form equations available in literature. With a remarkable computational improvement, the description of the central manifold is avoided. The Lindstedt–Poincaré Method can also be employed if only steady-state solutions have to be determined. An application is illustrated for a mechanical system subjected to aerodynamic excitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...