ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (313)
  • 1995-1999  (313)
  • 1999  (313)
Collection
Years
  • 1995-1999  (313)
Year
  • 1
    Publication Date: 2018-06-05
    Description: Eight continuous months of earth-nadir-viewing radiance measurements from the 3-channel Tropical Rainfall Measuring Mission (TRMM,) Clouds and the Earth's Radiant Energy System (CERES) scanning radiometric measurement instrument, have been analyzed. While previous remote sensing satellites, such as the Earth Radiation Budget Experiment (ERBE) covered all subsets of the broadband radiance spectrum (total, longwave and shortwave.) CERES has two subset channels (window and shortwave) which do not give continuous frequency coverage over the total band. Previous experience with ERBE indicated the need for us to model the equivalent daytime longwave radiance using a window channel regression, which will allow us to validate the performance of the instrument using a three-channel inter-comparison. Limiting our consideration to the fixed azimuth plane, cross-track, scanning mode (FAPS), each nadir-viewing measurement was averaged into three subjective categories called daytime, nighttime, and twilight. Daytime was defined as any measurement taken when the solar zenith angle (SZA) was less than 90 ; nighttime was taken to be any measurement where the SZA was greater than 117 ; and twilight was everything else. Our analysis indicates that there are only two distinct categories of nadir-view data; daytime, and non-daytime (i.e., the union of the nighttime and twilight sets); and that the CERES longwave radiance is predictable to an accuracy of 1%, based on the SZA, and window channel measurements.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: NASA's Students' Cloud Observations On-Line (S'COOL) project, a hands-on educational project, was an innovative idea conceived by the scientists in the Radiation Sciences Branch at NASA Langley Research Center, Hampton, Virginia, in 1996. It came about after a local teacher expressed the idea that she wanted her students to be involved in real-life science. S'COOL supports NASA's Clouds and the Earth's Radiant Energy System (CERES) instrument, which was launched on the Tropical Rainforest Measuring Mission (TRMM) in November, 1997, as part of NASA's Earth Science Enterprise. With the S'COOL project students observe clouds and related weather conditions, compute data and note vital information while obtaining ground truth observations for the CERES instrument. The observations can then be used to help validate the CERES measurements, particularly detection of clear sky from space. In addition to meeting math, science and geography standards, students are engaged in using the computer to obtain, report and analyze current data, thus bringing modern technology into the realm of classroom, a paradigm that demands our attention.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Description: Altitude profiles of backscater ratio of the stratospheric background aerosol layer at altitudes between 15 and 25 km and high-altitude cirrus clouds at altitudes below 13 km are analyzed and discussed. Cirrus clouds were present on 16 of the 26 campaign nights.
    Keywords: Meteorology and Climatology
    Type: Journal of the American Meteorological Society
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: The ocean and the atmosphere are coupled by the fluxes of momentum, heat, and water, but in situ measurements of these fluxes are sparse and uneven.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Description: Liu et al.[1998] (hereafter referred as LTH), superimposed wind velocity anomalies observed by the NASA Scatterometer (NSCAT) on the map of sea surface temperature (SST) anomalies observed by the Advanced Very High Resolution Radiometer (AVHRR) in the Pacific at the end of May 1997, and illustrated that the three regions of anomalous warming in the North Pacific Ocean are related to wind anomalies through different mechanisms.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: Despite its small quantity the importance of upper tropospheric humidity (UTH) is its ability to trap the longwave radiation emitted from the Earth's surface, namely the greenhouse effect.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: Mars Exploration Program and Sample Return Missions; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Description: We do not understand nor are able to predict marine storms, particularly tropical cyclones, sufficiently well because ground-based measurements are sparse and operational numerical weather prediction models do not have sufficient spatial resolution nor accurate parameterization of the physics.
    Keywords: Meteorology and Climatology
    Type: 4th Symposium on Integrated Observing System; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-08
    Description: In today's heterogeneous computing environment of proliferating platforms and operating systems, the Internet, through the World Wide Web (WWW), is becoming the preferred interface to much of the world's archive of digital data.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-08
    Description: The physical interpretation of simultaneous multi-angle observations represents a relatively new approach to remote sensing of terrestrial geophysical and biophysical parameters.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-08
    Description: This paper provides a detailed illustration that it can be much more beneficial for ENSO forecasting to use data to improve the model parameterizations rather than to modify the initial conditions to gain in consistency with the simulated coupled system.
    Keywords: Meteorology and Climatology
    Type: Monthly Weather Review
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-05
    Description: One of the main objectives of the Clouds and the Earth's Radiant Energy System (CERES) project is the retrieval of cloud physical and microphysical properties simultaneously with observations of broadband radiative fluxes. These cloud parameter sare used for three main purposes: 1) to provide data for radiation-cloud climate feedback studies; 2) to provide scene identification data for the construction and application of angular distribution models; and 3) to be used as input to radiative transfer calculations of intra-atmospheric fluxes
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-08
    Description: The Global Positioning System (GPS) constellation of satellites is revolutionizing the science and technology of the Earth's ionosphere.
    Keywords: Meteorology and Climatology
    Type: URSI Reviews of Radio Science
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society, 10th Conference on Atmospheric Radiation; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.
    Keywords: Meteorology and Climatology
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 68-71; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges (intracloud and cloud-to-ground) as it orbits the Earth. A statistical examination of OTD lightning data reveals that nearly 1.2 billion flashes occurred over the entire earth during the one year period from September 1995 through August 1996. This translates to an average of 37 lightning flashes occurring around the globe every second, which is well below the traditional estimate of 100 flashes per second. An average of 75% of the global lightning activity during the year occurs between 30' S and 30' N. An analysis of the annual lightning distribution reveals that an average of 82% of the lightning flashes occur over the continents and 18% over the oceans, which translates to an average land-ocean flash density ratio of nearly 11.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 726-729; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: Total lightning observations made by the Optical Transient Detector (OTD) of a tornadic thunderstorm that occurred over Oklahoma on 17 April 1995 are presented. The average flash rate of the tornadic storm during the 3.2 min observation period was 45 flashes/min, with a flash rate density of 1.16 x 10(exp -4)/s sq km. The total flash rate was almost 18 times higher than the cloud-to-ground rate measured by the National Lightning Detection Network (NLDN). In addition, total lightning rates were observed to decrease prior to tornadic development.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 722-725; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: The lightning frequency model developed by Baker, Christian and Latham (1995) has been refined and extended, in an effort to provide a more realistic framework from which to examine computationally the relationships that might exist between lightning frequency f (which is now being routinely measured from satellites, using NASA/MSFC devices) and a variety of cloud physical parameters, including precipitation rate, updraught speed and non-precipitating ice content. Model results indicate the existence of a simple relationship between lightning frequency f and the upward flux of ice crystals into the thunderstorm anvil. It follows that, for a particular situation, one can assign a specific mass of non-precipitating ice to an individual lightning stroke. Therefore it may prove possible - using satellite measurements of global lightning - to estimate the atmospheric loading of ice crystals in thunderstorm anvils: a parameter of climatological importance. Early results from this work are presented, together with further studies of the relationships between f and other thundercloud parameters.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 363-366; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: The Lightning Imaging Sensor (LIS) is a NASA Earth Observing System (EOS) instrument on the Tropical Rainfall Measuring Mission (TRMM) platform designed to acquire and investigate the distribution and variability of total lightning (i.e., cloud-to-ground and intracloud) between q35' in latitude. Since lightning is one of the responses of the atmosphere to thermodynamic and dynamic forcing, the LIS data is being used to detect deep convection without land-ocean bias, estimate the precipitation mass in the mixed phased region of thunderclouds, and differentiate storms with strong updrafts from those with weak vertical motion.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 746-749; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: Since April 1995, lightning activity around the globe has been monitored with the Optical Transient Detector (OTD). The OTD observations acquired during the one year period from September 1995 through August 1996 have been used to statistically determine the number of flashes that occur over the Earth during each hour of the diurnal cycle, expressed both as a function of local time and universal time. The globally averaged local [il,htnina activity displays a peak in late afternoon (1500-1800 local time) and a minimum in the morning hours (0600- 1000 local time) consistent with convection associated with diurnal heating. No diurnal variation is found for oceanic storms. The diurnal lightning distribution (universal time) for the globe displays a variation of about 35% about its mean as compared to the Carnegie curve which has a variation of only 15% above and below the mean.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 742-745; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-12-03
    Description: The mapping of the lightning optical pulses detected by the Lightning Imaging Sensor (LIS) is compared with the radiation sources by Lightning Detection and Ranging (LDAR) and the National Lightning Detection Network (NLDN) for three thunderstorms observed during and overpasses on 15 August 1998. The comparison involves 122 flashes including 42 ground and 80 cloud flashes. For ground flash, the LIS recorded the subsequent strokes and changes inside the cloud. For cloud flashes, LIS recorded those with higher sources in altitude and larger number of sources. The discrepancies between the LIS and LDAR flash locations are about 4.3 km for cloud flashes and 12.2 km for ground flashes. The reason for these differences remain a mystery.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 738-741; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: Significant differences are known to exist on a global scale between continental and oceanic total lightning regional flash rates, suggesting differences in the properties of convective storms in these regimes. Lightning properties observed by the Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) over land and ocean are compared, limited to analysis over the tropics in order to simplify physical interpretation. We find that the mean flash rates of individual storms over tropical land only exceed those over ocean by a factor of 2 (far less than the observed differences in regional flash rates). However, the average nearest neighbor distance of continental thunderstorms is half that over oceans. Cloud-top lightning optical radiance in oceanic storms is also twice as large as over land, suggesting either more energetic flashes over the oceans or less intervening cloud particles.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 734-737; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX-3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements are shown: typical flight altitude is 20km. Our new mills have an internal 16-bit A/D, with a resolution of 0.25V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 527-529; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: The El Nino Southern Oscillation (ENSO) is a climate anomaly responsible for world-wide weather impacts ranging from droughts to floods. In the United States, warm episode years are known to produce above normal rainfall along the Southeast US Gulf Coast and into the Gulf of Mexico, with the greatest response observed in the October-March period of the current warm-episode year. The 1997-98 warm episode, notable for being the strongest event since 1982-83, presents our first opportunity to examine the response to a major ENSO event and determine the variation of wintertime thunderstorm activity in this part of the world. Due to the recent launch of a lightning sensor on NASA's Tropical Rainfall Measuring Mission (TRMM) in November 1997 and the expanded coverage of the National Lightning Detection Network (NLDN), we are able to examine such year-to-year changes in lightning activity with far greater detail than ever before.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 519-522; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: A charge transfer process during the collision of a riming graupel pellet and an ice-crystal at low temperature is proposed. During riming, the surface structure of graupel deviates from perfect crystalline structure. A concept of quasi-solid layer (QSL) formation on the surface is introduced. This QSL contains defects formed during riming. In absence of impurities, positively charged X-defect abundance is considered in the outer layer. These defects are assumed to be the charge carriers during the charge transfer process. Some part of the QSL is stripped off by the colliding ice crystals, which thereby gain some positive charge, leaving the graupel pellet negatively charged. With the proposed model, fC to pC of charge transfer is observed per collision. A transition temperature between -10 C to -15 C is also noted beyond which the QSL concept does not hold. This transition temperature is dependent on the bulk liquid water content of the cloud.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 296-299; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-12-03
    Description: Severe storms often have high flash rates (in excess of one flash per second) and are dominated by intracloud lightning activity. In addition to the extraordinary flash rates, there is a second distinguishing lightning characteristic of severe storms that seems to be important. When the total lightning history is examined, one finds sudden increases in the lightning rate, which we refer to as lightning "jumps," that precede the occurrence of severe weather by ten or more minutes. These jumps are typically 30-60 flashes/min, and are easily identified as anomalously large derivatives in the flash rate. This relationship is associated with updraft intensification and updraft strength is an important factor in storm severity (through the accumulation of condensate aloft and the stretching of vorticity). In several cases, evidence for diminishment of midlevel rotation and the descent of angular momentum from aloft is present prior to the appearance of the surface tornado. Based on our experience with severe and tornadic storms in Central Florida, we believe the total lightning may augment the more traditional use of NEXRAD radars and storm spotters. However, a more rigorous relation of these jumps to storm kinematics is needed if we are to apply total lightning in a decision tree that leads to improved warning lead times and decreased false alarm rates.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 515-518; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-12-03
    Description: It is well known that most tropical cyclones (TCs) that make landfall along the Gulf coast of the United States spawn at least a few tornadoes. Although most landfalling TCs generate fewer than a dozen such tornadoes, a small proportion produce large swarm outbreaks, with as many as 25 or more tornadoes. Usually, these major outbreaks occur in large, intense hurricane-strength TCs, but on 15-17 August 1994 Tropical Storm Beryl spun off 37 tornadoes along its path from the Florida panhandle through the mid-Atlantic states. Some 32 of these tornadoes occurred on 16 August 1994 from eastern Georgia to southern Virginia, with most of these taking place in South Carolina. Beryl's 37 tornadoes moved it into what was at that time fifth place historically in terms of TC tornado productivity. The Beryl outbreak is especially noteworthy in that at least three of the tornadoes achieved peak intensity of F3 on the Fujita damage intensity scale. Although no fatalities resulted from the Beryl outbreak, at least 50 persons suffered injuries, and property damages totalled more than $50 million . The Beryl outbreak is a good example of a TC whose greatest danger to the public is its post-landfall severe weather. In this respect, and in the character of its swarm outbreak of tornadoes, it resembles another large tornado outbreak spawned by a relatively weak TC, Hurricane Danny of 1985). In the Danny outbreak, numerous shallow mini-supercell storms were found to have occurred, and it was noted that, because of the storms' relatively shallow depth, cloud-to-ground (CG) lightning was negligible. Better observations of future TC tornado outbreaks, especially with modern surveillance tools such as Doppler radars and the National Lightning Detection Network (NLDN), were recommended. Although the Beryl tornado outbreak is not the first set of TC-spawned tornado storms to be observed with the NLDN, it is one of the largest and likely the most intense such outbreak. The purpose of this paper is to document the NLDN-derived CG lightning characteristics of Beryl's tornadic storms, and to see how they compare with observations of CG lightning activity in other types of severe storms. In particular, we attempt to quantify the CG flash rates of TC tornadic cells, and to discover if there are any characteristics of their CG activity that may be useful to operational forecasters seeking to distinguish which cells are most likely to produce severe weather.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 511-514; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-12-03
    Description: The danger of natural and triggered lightning significantly impacts space launch operations supported by the USAF. The lightning Launch Commit Criteria (LCC) are used by the USAF to avoid these lightning threats to space launches. This paper presents a brief overview of the LCC.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 238-241; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: In winter, active convective clouds frequently form along the coastline of the Hokuriku district, in association with strong advection of Siberian air masses over the Sea of Japan. On the other hand, in summer, many thunderclouds form in the Kanto region in the afternoon every day. Summer and winter thunderclouds were investigated by field works, operation of the C- and X-band weather radars and a car-borne fieldmill. The investigation found a very close relation between the temporal variation of 3-dimensional radar echo and surface electric field magnitude detected by a car-borne fieldmill in the case of summer thunderclouds and winter convective clouds or thunderclouds. The study probed the close relation among radar echoes, quantity of thunderclouds and surface electric field magnitude in the summer and winter seasons. We think that summer thundercloud activity can basically be equated with winter thundercloud lightning activity, except that the magnitude of surface electric field under summer thunderclouds in the case of the Kanto region cannot be equated with that under winter thunderclouds in the case of the Hokuriku district in winter.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 464-467; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-12-03
    Description: The problem of retrieving ligntning, ground-strike location on a spherical Earth surface using a network of 4 or more time-of-arrival (TOA) sensors is considered, It is shown that this problem has an analytic solution and therefore does not require the use of nonlinear estimation theory (e.g., minimization). The mathematical robustness of the analytic solution is tested using computer-generated lightning sources and simulated TOA measurement errors. A summary of a quasi-analytic extension of the spherical Earth solution to an oblate spheroid Earth geometry is also provided.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 192-195; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-12-03
    Description: For the past century, scientists have made quantitative measurements of lightning discharges. In the process, they refined the definition of a lightning unit, or basic quantum of lightning, in order to base it on observable parameters. In this paper, we will use cluster analysis to derive a basic spatial and temporal definition or scale length for the unit of lightning. We will use data from three different systems that detected pulses from the same storm complex over Central Oklahoma during June, 1998. Since the different instruments detect lightning in different ways with different resolutions, there may not be a single definition of the unit of lightning that can be applied to all three systems. However, common components can be found since all instrumentation are detecting aspects of the same phenomenon.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 166-169; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-12-03
    Description: Charged aerosol clouds allow to create strong electric fields which generate discharges. A character of appearance and development of the discharges is similar to thundercloud processes. That is why the charged aerosol clouds are used for experiments on studying of discharges in air. Experimental data on electromagnetic fields investigation produced by discharges between charged cloud and ground are considered.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 135-137; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-12-03
    Description: This study summarizes the results of an analysis of data from the LIS instrument on the TRMM platform. The data for the Indian summer monsoon season is examined to study the seasonal patterns of the geographic and diurnal distribution of lightning storms. The storms on the Tibetan plateau show a single large diurnal peak at about 1400 local solar time. A region of Northern Pakistan has two storm peaks at 0200 and 1400 local solar time. The morning peak is half the magnitude of the afternoon peak. The region south of the Himalayan Mountains has a combined diurnal cycle in location and time of storm occurrence.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 420-423; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-12-03
    Description: A six year record of optical observations of lightning-induced mesospheric transient luminous events (TLEs) is available from the Yucca Ridge Field Station (YRFS) near Ft. Collins, CO. Climatological analyses reveal sprites and elves occur in a variety of convective storm types, but principally mesoscale convective systems (MCSs) and squall lines. Severe supercell storms rarely produce TLEs, except during their dissipating stage. Few TLEs are observed during storms with radar echo areas 〈7,500 sq km. Above this size there is a modest correlation with radar areal coverage. A typical High Plains storm produces 45 TLEs over a 143 interval. Sprites and most elves are associated with +CGs. The probability of a TLE increases with peak current. In six storms, 5.1% of +CGs produced TLEs, the number increasing to 32% of +CGs with 〉75 kA and 52% of +CGs with 〉100 kA peak current.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 84-87; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-12-03
    Description: Thunderstorms separate charge. Most places they lift positive charge or lower negative, a few places they lift negative or lower positive. The electrical generator is stronger in some parts of the cloud than in others. Our long term goal is to map this generator. Cloud physicists tell us that uncharged ice and water particles become charged by collision, and that the charge transferred depends on size, temperature and humidity. There is still some disagreement about exactly how the charge transferred depends on size, temperature, and humidity. In principle, if we knew this ice physics, and also knew the distribution of particles everywhere in the storm, and the winds everywhere and the temperature and humidity everywhere, then we could compute everywhere the electrical power of the thunderstorm generator. In practice it is difficult to know all these things, particularly the distribution of particles, so it is difficult to use real thunderstorms to falsify cloud electrification theories. We here take one small step towards computing that map of electrical generator power, by relating radar reflectivity profiles of 2000 storms to lightning flash rates of those storms. This small step by itself doesn't falsify any existing electrification theories; it merely places weak constraints on the relation of electric generator power to cloud ice.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 719-721; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Two primary detection techniques (optical and RF) have a proven capability for detecting lightning from low earth orbit. However, the lightning processes that generate the optical and RF signals are vastly different providing significantly different information content from each sensor type. Because of the intervening ionosphere, low frequency RF components do not reach satellite altitudes. As a consequence, many of the processes associated with the major energy release of a lightning event (i.e. return strokes, k-changes, recoil streamers, etc), in all likelihood contribute little to the RF signal arriving at the satellite. The optical output from lighting, on the other hand, has been shown to be highly correlated with the energetic, charge-transferring processes mentioned above. On the down side, the optical energy, while essentially unaffected by the atmosphere once it emerges from the cloud, is heavily scattered within the cloud. While there is little absorption by the cloud, the great optical depth makes the total light energy emerging from the cloud to be dependent on where in the cloud the lightning occurred. Analyses suggest that when lightning is confined to the lowest regions of the cloud, the light is strongly attenuated and detection becomes problematic. Fortunately, the vast majority of lightning flashes are comprised of channels that propagate through the middle of the cloud and higher. These flashes produce bright signals at the top of a cloud and are readily detectable. Presently, we have two optical instruments in orbit. The Optical Transient Detector (OTD) has been orbiting the earth since April, 1995, while the Lightning Imaging Sensor (LIS) was launched on the Tropical Rainfall Measuring Mission (TRMM) in November of 1997. Both instruments are relatively small, solid state optical imagers, designed specifically to detect and locate lightning activity from low earth orbit with high detection efficiency and location accuracy.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 715-718; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2004-12-03
    Description: In recent years, atmospheric conductivity and electric field measurements over thunderstorms have been made at 20 km with a high altitude aircraft. After compensating for the effects of aircraft charging induced by external electric fields no significant variations in ambient conductivity above thunderstorms have been found. These Gerdien results contrast strongly with the large (and frequent) conductivity variations reported in studies using relaxation probe techniques.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 646-649; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2004-12-03
    Description: The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.
    Keywords: Meteorology and Climatology
    Type: NASA Scientific Forum on Climate Variability and Global Change: UNISPACE 3; 1-14; NASA/CP-1999-209240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-23
    Description: Photon transport in a multiple scattering medium is critically dependent on scattering statistics, in particular the average number of scatterings. A superposition technique is derived to accurately determine the average number of scatterings encountered by reflected and transmitted photons within arbitrary layers in plane-parallel, vertically inhomogeneous clouds. As expected, the resulting scattering number profiles are highly dependent on cloud particle absorption and solar/viewing geometry. The technique uses efficient adding and doubling radiative transfer procedures, avoiding traditional time-intensive Monte Carlo methods. Derived superposition formulae are applied to a variety of geometries and cloud models, and selected results are compared with Monte Carlo calculations. Cloud remote sensing techniques that use solar reflectance or transmittance measurements generally assume a homogeneous plane-parallel cloud structure. The scales over which this assumption is relevant, in both the vertical and horizontal, can be obtained from the superposition calculations. Though the emphasis is on photon transport in clouds, the derived technique is applicable to any scattering plane-parallel radiative transfer problem, including arbitrary combinations of cloud, aerosol, and gas layers in the atmosphere.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-23
    Description: Data from both 27 sites in the Atlanta mesonet surface meteorological network and eight National Weather Service sites were analyzed for the period from 26 July to 3 August 1996. Analysis of the six precipitation events over the city during the period (each on a different day) showed that its urban heat island (UHI) induced a convergence zone that initiated three of the storms at different times of the day, i.e., 0630,0845, and 1445 EDT. Previous analysis has shown that New York City (NYC) effects summer daytime thunderstorm formation and/or movement. That study found that during nearly calm regional flow conditions the NYC UHI initiates convective activity. Moving thunderstorms, however, tended to bifurcate and to move around the city, due to its building barrier effect. The current Atlanta results thus agree with the NYC results with respect to thunderstorm initiation.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Environment (ISSN 1352-2310); Volume 34; 507-516
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-23
    Description: A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-23
    Description: Given the substantial radiative effects of cirrus clouds and the need to validate cirrus cloud mass in climate models, it is important to measure the global distribution of cirrus properties with satellite remote sensing. Existing cirrus remote sensing techniques, such as solar reflectance methods, measure cirrus ice water path (IWP) rather indirectly and with limited accuracy. Submillimeter/wave radiometry is an independent method of cirrus remote sensing based on ice particles scattering the upwelling radiance emitted by the lower atmosphere. A new aircraft instrument, the Far Infrared Sensor for Cirrus (FIRSC), is described. The FIRSC employs a Fourier Transform Spectrometer (FTS). which measures the upwelling radiance across the whole submillimeter region (0.1 1.0-mm wavelength). This wide spectral coverage gives high sensitivity to most cirrus particle sizes and allows accurate determination of the characteristic particle size. Radiative transfer modeling is performed to analyze the capabilities of the submillimeter FTS technique. A linear inversion analysis is done to show that cirrus IWP, particle size, and upper-tropospheric temperature and water vapor may be accurately measured, A nonlinear statistical algorithm is developed using a database of 20000 spectra simulated by randomly varying most relevant cirrus and atmospheric parameters. An empirical orthogonal function analysis reduces the 500-point spectrum (20 - 70/cm) to 15 "pseudo-channels" that are then input to a neural network to retrieve cirrus IWP and median particle diameter. A Monte Carlo accuracy study is performed with simulated spectra having realistic noise. The retrieval errors are low for IWP (rms less than a factor of 1.5) and for particle sizes (rins less than 30%) for IWP greater than 5 g/sq m and a wide range of median particle sizes. This detailed modeling indicates that there is good potential to accurately measure cirrus properties with a submillimeter FTS.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 38; 514-525
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-23
    Description: The South China Sea Monsoon Experiment (SCSMEX) is an international field experiment with the objective to better understand the key physical processes for the onset and evolution of the Asian summer monsoon in relation to fluctuation of the regional hydrologic cycle over Southeast Asian, southern East Asia, aiming at improving monsoon prediction. In this article, we present a description of the major meteorological observation platforms during the Intensive Observing Periods (IOP) of SCSMEX. We also provide highlights of early results and discussions of the role of SCSMEX in providing valuable in-situ data for calibration of satellite rainfall estimate from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results indicate that there are distinctive stages in the onset of the South China Sea monsoon including possibly strong influences from extratropical systems as well as from convection over the Indian Ocean and the Bay of Bengal. There are some tantalizing evidence of complex interactions between the supercloud cluster development over the Indian Ocean, advancing southwest monsoon flow over the South China Sea, midlatitude disturbances and the western Pacific subtropical high, possibly contributing to the disastrous flood over Yangtze River Basin in China during June 1998.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan, provides visible, infrared, and microwave observations of tropical and subtropical rain systems.The satellite observations are complemented by ground radar and rain gauge measurements to validate satellite rain estimation techniques. Goddard Space Flight Center's involvement includes the observatory, four instruments, integration and testing of the observatory, data processing and distribution, and satellite operations. TRMM has a design lifetime of three years. Data generated from TRMM and archived at the GDAAC are useful not only for hydrologists, atmospheric scientists, and climatologists, but also for the health community studying infectious diseases, the ocean research community, and the agricultural community.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-31
    Description: Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate 3) Improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37'N to 37'S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-23
    Description: Cloud-integrated attenuated backscatter from observations with the Lidar In-Space Technology Experiment (LITE) was studied over a range of cirrus clouds capping some extensive mesoscale convective systems (MCSS) in the Tropical West Pacific. The integrated backscatter when the cloud is completely attenuating, and when corrected for multiple scattering, is a measure of the cloud particle backscatter phase function. Four different cases of MCS were studied. The first was very large, very intense, and fully attenuating, with cloud tops extending to 17 km and a maximum lidar pulse penetration of about 3 km. It also exhibited the highest integrated attenuated isotropic backscatter, with values in the 532-nm channel of up to 2.5 near the center of the system, falling to 0.6 near the edges. The second MCS had cloud tops that extended to 14.8 km. Although MCS2 was almost fully attenuating, the pulse penetration into the cloud was up to 7 km and the MCS2 had a more diffuse appearance than MCS1. The integrated backscatter values were much lower in this system but with some systematic variations between 0.44 and 0.75. The third MCS was Typhoon Melissa. Values of integrated backscatter in tt-ds case varied from 1.64 near the eye of the typhoon to between 0.44 and 1.0 in the areas of typhoon outflow and in the 532-nm channel. Mean pulse penetration through the cloud top was 2-3 km, the lowest penetration of any of the systems. The fourth MCS consisted of a region of outflow from Typhoon Melissa. The cloud was semitransparent for more than half of the image time. During that time, maximum cloud depth was about 7 km. The integrated backscatter varied from about 0.38 to 0.63 in the 532-nm channel when the cloud was fully attenuating. In some isolated cirrus between the main systems, a plot of integrated backscatter against one minus the two-way transmittance gave a linear dependence with a maximum value of 0.35 when the clouds were fully attenuating. The effective backscatter-to-extinction ratios, when allowing for different multiple-scattering factors from space, were often within the range of those observed with ground-based lidar. Exceptions occurred near the centers of the most intense convection, where values were measured that were considerably higher than those in cirrus observed from the surface. In this case, the values were more compatible with theoretical values for perfectly formed hexagonal columns or plates. The large range in theoretically calculated back- scatter-to-extinction ratio and integrated multiple-scattering factor precluded a closer interpretation in terms of cloud microphysics.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology; Volume 38; 1330-1345
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-23
    Description: Latent heating profiles associated with three (TOGA COARE) Tropical Ocean and Global Atmosphere Coupled Ocean Atmosphere Response Experiment active convective episodes (December 10-17 1992; December 19-27 1992; and February 9-13 1993) are examined using the Goddard Cumulus Ensemble (GCE) Model and retrieved by using the Goddard Convective and Stratiform Heating (CSH) algorithm . The following sources of rainfall information are input into the CSH algorithm: Special Sensor Microwave Imager (SSM/1), Radar and the GCE model. Diagnostically determined latent heating profiles calculated using 6 hourly soundings are used for validation. The GCE model simulated rainfall and latent heating profiles are in excellent agreement with those estimated by soundings. In addition, the typical convective and stratiform heating structures (or shapes) are well captured by the GCE model. Radar measured rainfall is smaller than that both estimated by the GCE model and SSM/I in all three different COARE IFA periods. SSM/I derived rainfall is more than the GCE model simulated for the December 19-27 and February 9-13 periods, but is in excellent agreement with the GCE model for the December 10-17 period. The GCE model estimated stratiform amount is about 50% for December 19-27, 42% for December 11-17 and 56% for the February 9-13 case. These results are consistent with large-scale analyses. The accurate estimates of stratiform amount is needed for good latent heating retrieval. A higher (lower) percentage of stratiform rain can imply a maximum heating rate at a higher (lower) altitude. The GCE model always simulates more stratiform rain (10 to 20%) than the radar for all three convective episodes. SSM/I derived stratiform amount is about 37% for December 19-27, 48% for December 11-17 and 41% for the February 9-13 case. Temporal variability of CSH algorithm retrieved latent heating profiles using either GCE model simulated or radar estimated rainfall and stratiform amount is in good agreement with that diagnostically determined for all three periods. However, less rainfall and a smaller stratiform percentage estimated by radar resulted in a weaker (underestimated) latent heating profile and a lower maximum latent heating level compared to those determined diagnostically. Rainfall information from SSM/I can not retrieve individual convective events due to poor temporal sampling. Nevertheless, this study suggests that a good 4r, rainfall retrieval from SSM/I for a convective event always leads to a good latent heating retrieval. Sensitivity testing has been performed and the results indicate that the SSM/I derived time averaged stratiform amount may be underestimated for December 19-27. Time averaged heating profiles derived from SSM/I, however, are not in bad agreement with those derived by soundings for the December 10-17 convective period. The heating retrievals may be more accurate for longer time scales provided there is no bias in the sampling.
    Keywords: Meteorology and Climatology
    Type: Journal of the Meteorological Society of Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-23
    Description: A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.
    Keywords: Meteorology and Climatology
    Type: Annales Geophysicae; Volume 17; 1080-1094
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-23
    Description: An analysis of nadir reflectivity Fourier spatial power spectra and autocorrelation functions at solar wavelengths and for cloudy conditions has been carried out. The data come from Landsat Thematic Mapper (TM) observations, while Monte Carlo (MC) simulations are used to aid the interpretation of the Landsat results. We show that radiative processes produce consistent signatures on power spectra and autocorrelation functions. The former take a variety of forms not shown or explained in previous observational studies. We demonstrate that the TM spectra can potentially be affected by both radiative "roughening" at intermediate scales (approx. 1 -5 km), being more prevalent at large solar zenith angles, and the already documented radiative "smoothing" at small scales (less than 1 km). These processes are wavelength dependent, as shown by systematic differences between conservative (for cloud droplets) TM band 4 (approx. 0.8 microns) and absorbing band 7 (approx. 2.2 microns): band 7 exhibits more roughening and less smoothing. This is confirmed quantitatively by comparing least-squared fitted power spectral slopes for the two bands. It is also corroborated by a slower decrease with distance of autocorrelation function values for band 4 compared to band 7. The appearance of roughening at large solar zenith angles is a result of side illumination and shadowing and adds an additional complexity to the power spectra. MC spectra are useful in illustrating that scale invariant optical depth fields can produce complex power spectra that take a variety of shapes under different conditions. We show that radiative roughening increases with the decrease of single scattering albedo and with the increase of solar zenith angle (as in the observations). For high Sun there is also a clear shift of the radiative smoothing scale to smaller values as droplet absorption increases. The shape of the power spectrum is sensitive to the magnitude and type of cloud top height variability, with the spectral signatures of decorrelation between reflectance and optical depth at large scales becoming stronger as the magnitude of cloud top variations increase. Finally, the usefulness of power spectral analysis in evaluating the skill of novel optical depth retrieval techniques in removing 3D radiative effects is demonstrated. New techniques using inverse Non-local Independent Pixel Approximation (NIPA) and Normalized Difference of Nadir Reflectivity (NDNR) yield optical depth fields which better match the scale-by-scale variability of the true optical depth field.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: In 1996-1997 an experiment with super dwarf wheat (Greenhouse-2) was made aboard the orbital complex MIR as a part of the MIR-NASA space science program. The article deals with the main production and morphometric characteristics of plants that completed their vegetation cycle in the space flight. Lengths of the whole cycle of vegetation and its individual stages were essentially same as in ground control experiments. Dry mass of one plants equal, the number of headed shoots was in 2.7 times less in the flight harvest as compared with the control. The height of shoots was reduced by one half. No seeds were found in the heads formed in space. The architecture of heads was substantially different from what had been observed in the preceeding ground control experiments: mass of the heads was halved and lengths of inflorescence and palea awn shortened. The number of spikelets in a head reduced up to 8-10 vs. 13-14 in the controls, whereas the number of florets per a spikelet averaged 5 vs. 3 in the controls. The experiments showed that mainly the most profound changes in the productive and morphometric parameters of the super dwarf wheat plants were largely caused by the phytotoxic effects of ethylene rather than spaceflight specific factors as its concentrations in the MIR air amount to 0.3-1.8 mg/m3.
    Keywords: Meteorology and Climatology
    Type: Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine (ISSN 0233-528X); Volume 33; 2; 37-41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-29
    Description: The 1997-99 ENSO (El nino Southern Oscillation) cycle was very powerful, but also well observed. The best satellite rainfall estimates combined with gauge observations allow for a global analysis of precipitation anomalies accompanying the 1997-98 El Nino and initiation of the 1998-99 La Nina. For the period April 1997 to March 1998 the central to eastern Pacific, southeastern and western U.S., Argentina, eastern Africa, South China, eastern Russia, and North Atlantic were all more than two standard deviations wetter than normal. During the same year the Maritime Continent, eastern Indian Ocean, subtropical North Pacific, northeastern South America, and much of the mid- latitude southern oceans were more than two standard deviations drier than normal. An analysis of the evolution of the El Nino and accompanying precipitation anomalies revealed that a dry Maritime Continent led the formation of the El Nino SST (Sea Surface Temperature), while in the central Pacific, precipitation anomalies lagged the El Nino SST by a season. A rapid transition from El Nino to La Nina occurred in May 1998, but as early as October-November 1997 precipitation indices captured precursor changes in Pacific rainfall anomalies. Differences were found between observed and modeled [NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis] precipitation anomalies for 1997 and 98. In particular, the model had a bias towards positive precipitation anomalies and the magnitudes of the anomalies in the equatorial Pacific were small compared to the observations. Also, the evolution of the precipitation field, including the drying of the Maritime Continent and eastward progression of rainfall in the equatorial Pacific, was less pronounced for the model compared to the observations. One degree daily estimates of rainfall show clearly the MaddenJulian Oscillation and related westerly wind burst events over the Maritime Continent, which are key indicators for the onset of El Nino.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-29
    Description: The distribution and intensity of total (i.e., combined stratified and convective processes) rainrate/latent heat release (LHR) were derived for tropical cyclone Paka during the period 9-21 December, 1997 from the F-10, F-11, F-13, and F-14 Defense Meteorological Satellite Special Sensor Microwave/Imager and the Tropical Rain Measurement Mission Microwave Imager observations. These observations were frequent enough to capture three episodes of inner core convective bursts that preceded periods of rapid intensification and a convective rainband (CRB) cycle. During these periods of convective bursts, satellite sensors revealed that the rainrates/LHR: 1) increased within the inner eye wall region; 2) were mainly convectively generated (nearly a 65% contribution), 3) propagated inwards; 4) extended upwards within the middle and upper-troposphere, and 5) became electrically charged. These factors may have caused the eye wall region to become more buoyant within the middle and upper-troposphere, creating greater cyclonic angular momentum, and, thereby, warming the center and intensifying the system. Radiosonde measurements from Kwajalein Atoll and Guam, sea surface temperature observations, and the European Center for Medium Range Forecast analyses were used to examine the necessary and sufficient condition for initiating and maintaining these inner core convective bursts. For example, the necessary conditions such as the atmospheric thermodynamics (i.e., cold tropopause temperatures, moist troposphere, and warm SSTs [greater than 26 deg]) suggested that the atmosphere was ideal for Paka's maximum potential intensity (MPI) to approach super-typhoon strength. Further, Paka encountered weak vertical wind shear (less than 15 m/s ) before interacting with the westerlies on 21 December. The sufficient conditions, on the other hand, appeared to have some influence on Paka's convective burst, but the horizontal moisture flux convergence values in the outer core were weaker than some of the previously examined tropical cyclones. Also, the upper tropospheric outflow generation of eddy relative angular momentum flux convergence was 4D much less than that found during moderate tropical cyclone/trough interaction. These results indicated how important the external necessary condition and the internal forcing (i.e., CRB cycle) were in generating Paka's convective bursts as compared to the external sufficient forcing mechanisms found in higher latitude tropical cyclones. Later, as Paka began to interact with the westerlies, both the necessary (i.e., strong vertical shear and colder SSTs) and sufficient (i.e., dry air intrusion) external forcing mechanisms helped to decrease Paka's rainrate.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-29
    Description: The MM5 mesoscale model is used to simulate Hurricane Bob (1991) using grids nested to high resolution (4 km). Tests are conducted to determine the sensitivity of the simulation to the available planetary boundary layer parameterizations, including the bulk-aerodynamic, Blackadar, Medium-RanGe Forecast (MRF) model, and Burk-Thompson boundary-layer schemes. Significant sensitivity is seen, with minimum central pressures varying by up to 17 mb. The Burk-Thompson and bulk-aerodynamic boundary-layer schemes produced the strongest storms while the MRF scheme produced the weakest storm. Precipitation structure of the simulated hurricanes also varied substantially with the boundary layer parameterizations. Diagnostics of boundary-layer variables indicated that the intensity of the simulated hurricanes generally increased as the ratio of the surface exchange coefficients for heat and momentum, C(sub h)/C(sub M), although the manner in which the vertical mixing takes place was also important. Findings specific to the boundary-layer schemes include: 1) the MRF scheme produces mixing that is too deep and causes drying of the lower boundary layer in the inner-core region of the hurricane; 2) the bulk-aerodynamic scheme produces mixing that is probably too shallow, but results in a strong hurricane because of a large value of C(sub h)/C(sub M) (approximately 1.3); 3) the MRF and Blackadar schemes are weak partly because of smaller surface moisture fluxes that result in a reduced value of C(sub h)/C(sub M) (approximately 0.7); 4) the Burk-Thompson scheme produces a strong storm with C(sub h)/C(sub M) approximately 1; and 5) the formulation of the wind-speed dependence of the surface roughness parameter, z(sub 0), is important for getting appropriate values of the surface exchange coefficients in hurricanes based upon current estimates of these parameters.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-29
    Description: High-resolution AMS (accelerator-mass-spectrometer) radiocarbon dating was performed on late-glacial macrofossils in lake sediments from Kodiak Island, Alaska, and on shells in marine sediments from southwest Sweden. In both records, a dramatic drop in radiocarbon ages equivalent to a rise in the atmospheric C-14 by approximately 70%. coincides with the beginning of the cold period at 11000 yr B.P. (C-14 age). Thus our results show that a close correlation between climatic records around the globe is possible by using a global signature of changes in atmospheric C-14 content.
    Keywords: Meteorology and Climatology
    Type: Geology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-29
    Description: Advantages introduced by Raman lidar systems for cloud base determination during precipitating periods are explored using two case studies of light rain and virga conditions. A combination of the Raman lidar derived profiles of water vapor mixing ratio and aerosol scattering ratio, together with the Raman scattered signals from liquid drops, can minimize or even eliminate some of the problems associated with cloud boundary detection using elastic backscatter lidars.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-29
    Description: As established in previous studies, and analyzed further herein for the years 1988-1998, warm advection from the North Atlantic is the predominant control of the surface-air temperature in northern-latitude Europe in late winter. This thesis is supported by the substantial correlation Cti between the speed of the southwesterly surface winds over the eastern North Atlantic, as quantified by a specific Index Ina, and the 2-meter level temperature Ts over central Europe (48-54 deg N; 5-25 deg E), for January, February and early March. In mid-March and subsequently, the correlation Cti drops drastically (quite often it is negative). The change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature. As (a) the sun rises higher in the sky, (b) the snows melt (the surface absorptivity can increase by a factor of 3.0), (c) the ocean-surface winds weaken, and (d) the temperature difference between land and ocean (which we analyze) becomes small, absorption of insolation replaces the warm advection as the dominant control of the continental temperature. We define the onset of spring by this transition, which evaluated for the period of our study occurs at pentad 16 (Julian Date 76, that is, March 16). The control by insolation means that the surface is cooler under cloudy conditions than under clear skies. This control produces a much smaller interannual variability of the surface temperature and of the lapse rate than prevailing in winter, when the control is by advection. Regional climatic data would be of greatest value for agriculture and forestry if compiled for well-defined seasons. For continental northern latitudes, analysis presented here of factors controlling the surface temperature appears an appropriate tool for this task.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-29
    Description: Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer brightness temperature data in the 85 GHz channel (T85) reveal distinct local minima (T85min) in a regional map containing a Mesoscale Convective System (MCS). This is because of relatively small footprint size (approximately 5.5 km) and strong extinction properties in this channel of the TMI. A map of surface rain rate for that region, deduced from simultaneous measurements made by the Precipitation Radar (PR) on board the TRMM satellite, reveals that these T85(sub min), produced by scattering, correspond to local PR rain maxima. Utilizing the PR rain rate map as a guide, we infer empirically from TMI data the presence of three different kinds of thunderstorms or Cbs. These Cbs are classified as young, mature, and decaying types, and are assumed to have a scale of about 20 km on the average. Two parameters are used to classify these three kinds of Cbs based on the T85 data: a) the magnitude of scattering depression deduced from local T85(sub min) and b) the mean horizontal gradient of T85 around such minima. Knowing the category of a given Cb, we can estimate the rain rate associated with it. Such estimation is done with the help of relationships linking T85min to rain rate in each Cb type. Similarly, a weak background rain rate in all the areas where T85 is less than 260 K is deduced with another relationship linking T85 to rain rate. In our rain retrieval model, this background rain constitutes stratiform rain where the Cbs are absent. Initially, these relationships are optimized or tuned utilizing the PR and TMI data of a few MCS events. After such tuning, the model is applied to independent MCS cases. The areal distribution of light (1-10 mm/hr), moderate (10-20 mm/hr), and intense (〉= 20 mm/hr) rain rates are retrieved satisfactorily. Accuracy in the estimates of the light, moderate, and intense rain areas and the mean rain rates associated with such areas in these independent MCS cases is on the average about 15 %. Taking advantage of this ability of our retrieval method, one could derive the latent heat input into the atmosphere over the 760 km wide swath of the TMI radiometer in the tropics.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-29
    Description: In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded by incomplete beam filling. Users of level three TRMM PR products should be aware of this scale dependency.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-29
    Description: The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-29
    Description: Abstract A technique is described to use Tropical Rain Measuring Mission (TRMM) combined radar/radiometer information to adjust geosynchronous infrared satellite data (the TRMM Adjusted GOES Precipitation Index, or TRMM AGPI). The AGPI is then merged with rain gauge information (mostly over land; the TRMM merged product) to provide fine- scale (1 deg latitude/longitude) pentad and monthly analyses, respectively. The TRMM merged estimates are 10% higher than those from the Global Precipitation Climatology Project (GPCP) when integrated over the tropical oceans (37 deg N-S) for 1998, with 20% differences noted in the most heavily raining areas. In the dry subtropics the TRMM values are smaller than the GPCP estimates. The TRMM merged-product tropical-mean estimates for 1998 are 3.3 mm/ day over ocean and 3.1 mm/ day over land and ocean combined. Regional differences are noted between the western and eastern Pacific Ocean maxima when TRMM and GPCP are compared. In the eastern Pacific rain maximum the TRMM and GPCP mean values are nearly equal, very different from the other tropical rainy areas where TRMM merged-product estimates are higher. This regional difference may indicate that TRMM is better at taking in to account the vertical structure of the rain systems and the difference in structure between the western and eastern (shallower) Pacific convection. Comparisons of these TRMM merged analysis estimates with surface data sets shows varied results; the bias is near zero when compared to western Pacific Ocean atoll raingauge data, but significantly positive compared to Kwajalein radar estimates (adjusted by rain gauges). Over land the TRMM estimates also show a significant positive bias. The inclusion of gauge information in the final merged product significantly reduces the bias over land, as expected. The monthly precipitation patterns produced by the TRMM merged data process clearly show the evolution of the ENSO tropical precipitation pattern from early 1998 (El Nino) through early 1999 (La Nina) and beyond. The El Nino minus La Nina difference map shows the eastern Pacific maximum, the maritime continent minima and other tropical and mid-latitude features. The differences in the Pacific are very similar to those detected by the GPCP analyses. However, summing the El Nino minus La Nina differences over the global tropical oceans yields divergent answers from TRMM, GPCP and other estimates. This emphasizes the need for additional validation and analysis before it is feasible to understand the relations between global precipitation anomalies and Pacific Ocean ENSO temperature changes.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-29
    Description: A series of atmospheric general circulation model (AGCM) simulations, spanning a total of several thousand years, is used to assess the impact of land-surface and ocean boundary conditions on the seasonal-to-interannual variability and predictability of precipitation in a coupled modeling system. In the first half of the analysis, which focuses on precipitation variance, we show that the contributions of ocean, atmosphere, and land processes to this variance can be characterized, to first order, with a simple linear model. This allows a clean separation of the contributions, from which we find: (1) land and ocean processes have essentially different domains of influence, i.e., the amplification of precipitation variance by land-atmosphere feedback is most important outside of the regions (mainly in the tropics) that are most affected by sea surface temperatures; and (2) the strength of land-atmosphere feedback in a given region is largely controlled by the relative availability of energy and water there. In the second half of the analysis, the potential for seasonal-to-interannual predictability of precipitation is quantified under the assumption that all relevant surface boundary conditions (in the ocean and on land) are known perfectly into the future. We find that the chaotic nature of the atmospheric circulation imposes fundamental limits on predictability in many extratropical regions. Associated with this result is an indication that soil moisture initialization or assimilation in a seasonal-to-interannual forecasting system would be beneficial mainly in transition zones between dry and humid regions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-29
    Description: A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-29
    Description: The possibility of coupled modes in the extratropical North Atlantic has fascinated the climate community since 1960's. A significant aspect of such modes is an unstable air-sea interaction, also called positive feedback, where disturbances between the atmosphere and ocean grow unbound. If a delayed response exists before the negative feedback takes effect, an oscillatory behaviour will develop. Here we explore the relationship between heat flux (positive upward) and sea surface temperature (SST). Positive feedback is characterized by a cross-correlation between the two where correlation maintains a negative sign whether SST or heat flux leads. We use model results and observations to argue that in the North Atlantic there exist regions with positive feedback. The two main locations coincide with the well-known north-south SST dipole where anomalies of opposite sign occupy areas east of Florida and north-east of Newfoundland. We show that oceanic dynamics, wave propagation and advection, give rise to oceanic anomalies in these regions. Subsequently these anomalies are amplified by atmosphere- ocean interaction: thus a positive feedback.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-29
    Description: The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-29
    Description: We describe the application of the unbiased sequential analysis algorithm developed by Dee and da Silva (1998) to the GEOS DAS moisture analysis. The algorithm estimates the persistent component of model error using rawinsonde observations and adjusts the first-guess moisture field accordingly. Results of two seasonal data assimilation cycles show that moisture analysis bias is almost completely eliminated in all observed regions. The improved analyses cause a sizable reduction in the 6h-forecast bias and a marginal improvement in the error standard deviations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-29
    Description: Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.
    Keywords: Meteorology and Climatology
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 20; No. Y; 100-130
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-29
    Description: Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are: 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate, and 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 deg N to 37 deg S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-29
    Description: A model combining the rate of carbon assimilation with water and energy balance equations has been run using satellite and ancillary data for a period of 60 months (January 1986 to December 1990). Calculations for the Gediz basin area give mean annual evaporation as 395 mm, which is composed of 45% transpiration, 42% soil evaporation and 13% interception. The coefficient of interannual variation of evaporation is found to be 6%, while that for precipitation and net radiation are, respectively, 16% and 2%, illustrating that net radiation has an important effect in modulating interannual variation of evaporation. The mean annual water use efficiency (i.e., the ratio of net carbon accumulation and total evaporation) is ca. 1 g/sq m/mm, and has a coefficient of interannual variation of 5%. A comparison of the mean water use efficiency with field observations suggests that evaporation over the area is utilized well for biomass production. The reference crop evaporation for irrigated areas has annual mean and coefficient of variation as, respectively, 1176 mm and 3%. The total evaporation during three summer months of peak evaporation (June-August) is estimated to be about 575 mm for irrigated crops like maize and cotton. Seasonal variations of the fluxes are presented.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-08-29
    Description: Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-29
    Description: Using the Penn State/NCAR MM5 mesoscale model, a westerly wind burst (WWB) that occurred during the period from 19 to 30 December 1992 over the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) has been simulated and compared with observation. This event is characterized by the presence of super cloud clusters and the occurrence of a major WWB that extended over the western and central Pacific Ocean. Although several of the observed convective systems were not precisely simulated by MM5, the model did capture many other observed characteristics, such as the explosive development of convection, the cyclonic circulation and the WWB. The WWB resulted from the coalescence of three types of tropical disturbances. The first type was a low-level westerly jet (LWJ) that developed at the equator and may be associated with the eastward propagation of an ISO (Intraseasonal Oscillation). The second type featured an easterly wave-like disturbance that originated in the south central Pacific Ocean and propagated westward. Finally, the third type involved a cross-equatorial flow that deflected Northern Hemispheric easterlies into the Southern Hemisphere and may be caused by inertial instability. These disturbances worked in concert, resulting in intense convection over the TOGA COARE region. Once intense convection developed, a large-scale circulation was produced over the western Pacific warm pool, propagated eastward, and initiated a WWB.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-10
    Description: The climatology and surface radiation budget (SRB) of a region are intimately related. This paper presents a brief examination of this relationship. An 8-year surface radiation budget data set has been developed based on satellite measurements. In that data set and in this paper a region is defined as a quasi-square 2.5o in latitude and approximately the same physical distance in longitude. A pilot study by Wilber et al. (1998) showed a variety of behaviors of the annual cycles for selected regions. Selected desert regions form a loop in a specific part of the plot, with large NLW and large NSW. Tropical wet regions form much smaller loops in a different part of the plot, with small NLW and large NSW. For regions selected in high latitude the annual cycles form nearly linear figures in another part of the plot. The question arises as to whether these trajectories are characteristic of the climatology of the region or simply the behavior of the few regions selected from the set of 6596 regions. In order to address this question, it is necessary to classify the climatology of the each region, e.g. as classified by Koeppen (1936) or Trenwarthe and Horne (1980). This paper presents a method of classifying climate of the regions on the basis of the surface radiation behavior such that the results are very similar to the classification of Trenwarthe and Horne. The characteristics of the annual cycle of SRB components can then be investigated further, based on the climate classification of each region.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: This report summarizes the design of a new version of the stratiform cloud parameterization called Eauliq; the new version is called Eauliq NG. The key features of Eauliq NG are: (1) a prognostic fractional area covered by stratiform cloudiness, following the approach developed by M. Tiedtke for use in the ECMWF model; (2) separate prognostic thermodynamic variables for the clear and cloudy portions of each grid cell; (3) separate vertical velocities for the clear and cloudy portions of each grid cell, allowing the model to represent some aspects of observed mesoscale circulations; (4) cumulus entrainment from both the clear and cloudy portions of a grid cell, and cumulus detrainment into the cloudy portion only; and (5) the effects of the cumulus-induced subsidence in the cloudy portion of a grid cell on the cloud water and ice there. In this paper we present the mathematical framework of Eauliq NG; a discussion of cumulus effects; a new parameterization of lateral mass exchanges between clear and cloudy regions; and a theory to determine the mesoscale mass circulation, based on the hypothesis that the stratiform clouds remain neutrally buoyant through time and that the mesoscale circulations are the mechanism which makes this possible. An appendix also discusses some time-differencing methods.
    Keywords: Meteorology and Climatology
    Type: ASP-673
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-10
    Description: Profiles of the microphysical properties of clouds and raincells are essential in many areas of atmospheric research and operational meteorology. In order to enhance the understanding of the nonlinear and underconstrained relationships between cloud and hydrometeor microphysical profiles and passive microwave brightness temperatures, estimations of cloud profiles for an anvil, a convective, and an updraft region of an oceanic squall were performed. The estimations relied on comparisons between radiative transfer calculations of incrementally estimated microphysical profiles and concurrent dual-altitude wideband brightness temperatures from the 22 February 1993 flight during TOGA-COARE. The wideband observations (10--220 GHz) are necessary for estimating cloud profiles reaching up to 20 km. The low frequencies enhance the rain and cloud water profiles, while the high frequencies are required to detail the higher altitude ice microphysics. A microphysical profile was estimated for each of the three regions of the storm. Each of the three estimated profiles produced calculated brightness temperatures within approximately 10 K of the observations. A majority, of the total iterative adjustment were to the estimated profile's frozen hydrometeor characteristics and were necessary to match the high frequency calculations with the observations. This indicates a need to validate cloud resolving models using high frequencies. Some difficulties matching the 37 GHz observation channels on the DC-8 and ER-2 aircrafts with the calculations simulated at the two aircraft heights (approximately 11 km and 20 km, respectively) were noted and potential causes presented.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-10
    Description: The recent advent of satellite lightning detection programs has introduced a new potential for obtaining global information about other (hard to measure) cloud properties. We have made use of observations together with numerical model studies to show that positive correlations exist between: (1) lightning flashrate (F) and vertical velocity (w); and (2) flashrate (F) and the amount of condensate (water and ice) lofted through the -10 C isotherm (C(sub u)). The lightning flashrate appears to be very sensitive to the magnitude of the updraft velocity, with F increasing rapidly with w above a threshold of w approx. = 5-10 m/s. By contrast, we have found that the flashrate/condensate relationship appears to be approximately linear. We are currently refining the F-updraft and F-condensate relationships with further model studies before applying them to lightning data from the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). We hope, with this method, to provide estimates of the large scale vertical water transport by continental convective systems over seasonal timescales.
    Keywords: Meteorology and Climatology
    Type: 11th International Conference on Atmospheric Electricity; 276-279; NASA/CP-1999-209261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-10
    Description: Accurate accounting of surface emissivity is essential for the retrievals of surface temperature from remote sensing measurements, and for the computations of longwave (LW) radiation budget of the Earth?s surface. Past studies of the above topics assumed that emissivity for all surface types, and across the entire LW spectrum is equal to unity. There is strong evidence, however, that emissivity of many surface materials is significantly lower than unity, and varies considerably across the LW spectrum. We have developed global maps of surface emissivity for the broadband LW region, the thermal infrared window region (8-12 micron), and 12 narrow LW spectral bands. The 17 surface types defined by the International Geosphere Biosphere Programme (IGBP) were adopted as such, and an additional (18th) surface type was introduced to represent tundra-like surfaces. Laboratory measurements of spectral reflectances of 10 different surface materials were converted to corresponding emissivities. The 10 surface materials were then associated with 18 surface types. Emissivities for the 18 surface types were first computed for each of the 12 narrow spectral bands. Emissivities for the broadband and the window region were then constituted from the spectral band values by weighting them with Planck function energy distribution.
    Keywords: Meteorology and Climatology
    Type: NASA/TP-1999-209362 , L-17861 , NAS 1.60:209362
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-10
    Description: A global analysis that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data products contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. In this study, we show that assimilating precipitation and total precipitable water (TPW) retrievals derived from the TRMM Microwave Imager (TMI) improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the large-scale circulation produced by the Goddard Earth Observing System (GEOS) data assimilation system (DAS). In particular, assimilating TMI rain improves clouds and radiation in areas of active convection, as well as the latent heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW retrievals leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. The improved analysis also improves short-range forecasts in the tropics. Ensemble forecasts initialized with the GEOS analysis incorporating TMI rain rates and TPW yield smaller biases in tropical precipitation forecasts beyond 1 day and better 500 hPa geopotential height forecasts up to 5 days. Results of this study demonstrate the potential of using high-quality space-borne rainfall and moisture observations to improve the quality of assimilated global data for climate analysis and weather forecasting applications
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-10
    Description: Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer brightness temperature data in the 85 GHz channel (T85) reveal distinct local minima in a regional map containing a Mesoscale Convective System (MCS). This is because of relatively small footprint size (approximately 5.5 km) and strong extinction properties in this channel of the TMI. A map of rain rate for that region, deduced from simultaneous measurements made by the Precipitation Radar (PR) on board the TRMM satellite, reveals that these T85 minima, produced by scattering, correspond to local PR rain maxima. Utilizing the PR rain rate map as a guide, we infer from TMI data the presence of three different kinds of thunderstorms or Cbs. They are young, mature, and decaying Cbs that have a scale of about 20 km on the average. Two parameters enable us to infer these three kinds of Cbs objectively: a) the magnitude of scattering depression deduced from local T85 minima and b) the mean horizontal gradient of T85 around such minima. Knowing the category of a given Cb, we can estimate the rain rate associated with it. Such estimation is done with the help of relationships linking T85 minimum to rain rate in each Cb type. Similarly, a weak background rain rate in all the areas where T85 is less than 260 K is deduced with another relationship linking T85 to rain rate. In our rain retrieval model, this background rain constitutes the stratiform rain where the Cbs are absent. Initially, these relationships are optimized or tuned utilizing the PR and TMI data of a few MCS events. After such tuning, the model is applied to independent MCS cases. The areal distribution of light (1-10 mm/hr), moderate (10-20 mm/hr), and intense (〉 20 mm/hr) rain rates are retrieved satisfactorally. Accuracy in the estimates of the light, moderate and intense rain areas and the mean rain rates associated with such areas in these independent MCS cases is on the average about 15%. Taking advantage of this ability of our retrieval method, one could derive the latent heat input into the atmosphere over the 760 km wide swath of the TMI radiometer in the tropics.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-1999-209479 , Rept-99B00076 , NAS 1.15:209479
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: The objectives of this project, as described in the original proposal, were to develop an algorithm for diagnosing cloud properties over snow- and ice-covered surfaces, particularly at night, using satellite radiances from the Advanced Very High Resolution Radiometer (AVHRR) and High-resolution Infrared Radiation Sounder (HIRS) sensors. Products from this algorithm include a cloud mask and additional cloud properties such as cloud phase, amount, and height. The SIVIS software package, developed as a part of the CERES project, was originally the primary tool used to develop the algorithm, but as it is no longer supported we have had to pursue a new tool to enable the combination and analysis of collocated radiances from AVHRR and HIRS. This turned out to be a much larger endeavor than we expected, but we now have the data sets collocated (with many thanks to B. Baum for the fundamental code) and we have developed a nighttime cloud detection algorithm. Using this algorithm we have also computed realistic-looking cloud fractions from AVHRR brightness temperatures. A method to identify cloud phase has also been implemented. Atmospheric information from the TIROS Operational Vertical Sounder (TOVS) Polar Pathfinder Data Set, which includes temperature and moisture profiles as well as surface information, provides information required for determining cloud-top height.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-10
    Description: Recent research has led to a greatly increased understanding of the uncertainties in today's climate models. In attempting to predict the climate of the 21st century, we must confront not only computer limitations on the affordable resolution of global models, but also a lack of physical realism in attempting to model key processes. Until we are able to incorporate adequate treatments of critical elements of the entire biogeophysical climate system, our models will remain subject to these uncertainties, and our scenarios of future climate change, both anthropogenic and natural, will not fully meet the requirements of either policymakers or the public. The areas of most-needed model improvements are thought to include air-sea exchanges, land surface processes, ice and snow physics, hydrologic cycle elements, and especially the role of aerosols and cloud-radiation interactions. Of these areas, cloud-radiation interactions are known to be responsible for much of the inter-model differences in sensitivity to greenhouse gases. Recently, we have diagnostically evaluated several current and proposed model cloud-radiation treatments against extensive field observations. Satellite remote sensing provides an indispensable component of the observational resources. Cloud-radiation parameterizations display a strong sensitivity to vertical resolution, and we find that vertical resolutions typically used in global models are far from convergence. We also find that newly developed advanced parameterization schemes with explicit cloud water budgets and interactive cloud radiative properties are potentially capable of matching observational data closely. However, it is difficult to evaluate the realism of model-produced fields of cloud extinction, cloud emittance, cloud liquid water content and effective cloud droplet radius until high-quality measurements of these quantities become more widely available. Thus, further progress will require a combination of theoretical and modeling research, together with intensified emphasis on both in situ and space-based remote sensing observations.
    Keywords: Meteorology and Climatology
    Type: NASA Scientific Forum on Climate Variability and Global Change: UNISPACE 3; 31-41; NASA/CP-1999-209240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-10
    Description: This paper presents results of an empirical study to estimate the measurement error in the peak wind speed at Shuttle Launch Complex 39 (LC-39) which results from the measurement being made by sensors 1,300 feet away. Quality controlled data taken at a height of 30 feet from an array of sensors at the Shuttle Landing Facility (SLF) were used to model differences of peak winds as a function of separation distance and time interval. The SLF data covered wind speeds from less than ten to more than 25 knots. Winds measured at the standard LC-39 site at the normal height of 60 feet were used to verify the applicability of the model to the LC-39 situation. The error in the peak wind speed resulting from separation of the sensor from the target site obeys a power law as a function of separation distance and varies linearly with mean wind speed. At large separation distances, the error becomes a constant fraction of the mean wind speed as the separation function reaches an asymptotic value. The asymptotic average of the mean of the absolute difference in the peak wind speed between the two locations is about twelve percent of the mean wind speed. The distribution of the normalized absolute differences is half-Gaussian.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-1999-208544 , NAS 1.15:208544
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-10
    Description: Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-10
    Description: Individual surface weather observations from land stations and ships are compared with individual cloud retrievals of the International Satellite Cloud Climatology Project (ISCCP), Stage C1, for an 8-year period (1983-1991) to relate cloud optical thicknesses and cloud-top pressures obtained from satellite data to the standard cloud types reported in visual observations from the surface. Each surface report is matched to the corresponding ISCCP-C1 report for the time of observation for the 280x280-km grid-box containing that observation. Classes of the surface reports are identified in which a particular cloud type was