ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • method of multiple scales  (4)
  • Lagrangian dynamics  (3)
  • 1990-1994  (7)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 3 (1992), S. 261-271 
    ISSN: 1573-269X
    Keywords: Scaling behavior ; coupled nonlinear oscillator ; method of multiple scales ; Duffing equation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The scaling of the solution of coupled conservative weakly nonlinear oscillators is demonstrated and analyzed through evaluating the normal modes and their bifurcation with an equivalent linearization technique and calculating the general solutions with a method of multiple seales. The scaling law for coupled Duffing oscillators is that the coupling intensity should be proportional to the total energy of the system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-269X
    Keywords: Nonlinear dynamics ; control structure interaction ; multibody dynamics ; finite element method ; Lagrangian dynamics ; inverse dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The effect of the control structure interaction on the feedforward control law as well as the dynamics of flexible mechanical systems is examined in this investigation. An inverse dynamics procedure is developed for the analysis of the dynamic motion of interconnected rigid and flexible bodies. This method is used to examine the effect of the elastic deformation on the driving forces in flexible mechanical systems. The driving forces are expressed in terms of the specified motion trajectories and the deformations of the elastic members. The system equations of motion are formulated using Lagrange's equation. A finite element discretization of the flexible bodies is used to define the deformation degrees of freedom. The algebraic constraint equations that describe the motion trajectories and joint constraints between adjacent bodies are adjoined to the system differential equations of motion using the vector of Lagrange multipliers. A unique displacement field is then identified by imposing an appropriate set of reference conditions. The effect of the nonlinear centrifugal and Coriolis forces that depend on the body displacements and velocities are taken into consideration. A direct numerical integration method coupled with a Newton-Raphson algorithm is used to solve the resulting nonlinear differential and algebraic equations of motion. The formulation obtained for the flexible mechanical system is compared with the rigid body dynamic formulation. The effect of the sampling time, number of vibration modes, the viscous damping, and the selection of the constrained modes are examined. The results presented in this numerical study demonstrate that the use of the driving forees obtained using the rigid body analysis can lead to a significant error when these forces are used as the feedforward control law for the flexible mechanical system. The analysis presented in this investigation differs significantly from previously published work in many ways. It includes the effect of the structural flexibility on the centrifugal and Coriolis forces, it accounts for all inertia nonlinearities resulting from the coupling between the rigid body and elastic displacements, it uses a precise definition of the equipollent systems of forces in flexible body dynamics, it demonstrates the use of general purpose multibody computer codes in the feedforward control of flexible mechanical systems, and it demonstrates numerically the effect of the selected set of constrained modes on the feedforward control law.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-269X
    Keywords: Nonlinear vibration of a beam ; three mode interaction ; mid-plane stretching ; method of multiple scales
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies,ωn . Three mode interaction (ω2 ≈ 3ω1 and ω3 ≈ ω1 + 2ω2) is considered and its influence on the response is studied. The case of two mode interaction (ω2 ≈ 3ω1) is also considered to compare it with the case of three mode interaction. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is applied to solve the system. Steady-state responses and their stability are examined. Results of numerical investigations show that there exists no significant difference between both modal interactions' influences on the responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-269X
    Keywords: Beam ; gravity effect ; method of multiple scales ; nonlinear oscillations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract A critical problem in designing large structures for space applications, such as space stations and parabolic antennas, is the limitation of testing these structures and their substructures on earth. These structures will exhibit very high flexibilities due to the small loads expected to be encountered in orbit. It has been reported in the literature that the gravitational sag effect under dead weight is of extreme importance during ground tests of space-station structural components [1–4]. An investigation of a horizontal, pinned-pinned beam with complete axial restraint and undergoing large-amplitude oscillations about the statically deflected position is presented here. This paper presents a solution for the frequency-amplitude relationship of the nonlinear free oscillations of a horizontal, immovable-end beam under the influence of gravity. The governing equation of motion used for the analysis is the Bernoulli-Euler type modified to include the effects of mid-plane stretching and gravity. Boundary conditions are simply supported such that at both ends there is no bending moment and no transverse and axial displacements. These boundary conditions give rise to an initial tension in the statically deflected shape. The displacement function consists of an assumed space mode using a simple sine function and unknown amplitude which is a function of time. This assumption provides for satisfaction of the boundary conditions and leads to an ordinary differential equation which is nonlinear, containing both quadratic and cubic functions of the amplitude. The perturbation method of multiple scales is used to provide an approximate solution for the fundamental frequency-amplitude relationship. Since the beam is initially deflected the small-amplitude fundamental natural frequency always increases relative to the free vibration situation provided in zero gravity. The nonlinear equation provides for interactions between frequency and amplitude in that both hardening and softening effects arise. The coefficient of the quadratic term in the nonlinear equation arises from the static (dead load) portion of the deflection. This quadratic term, depending upon its magnitude, introduces a softening effect that overcomes the hardening term (due to initial axial tension developed by deflection) for large slenderness ratios. For very large slender, immovable-end beams, the fundamental natural frequency is greater than that of beams without axial constraints undergoing small amplitude oscillations. This phenomenon is attributed to the stiffening effect of the statically-induced axial tension. However, the stiffening effect of axial tension in beams with slenderness ratios greater than approximately 392 undergoing large-amplitude symmetric-mode oscillations is overpowered by the presence of gravitational loading.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-269X
    Keywords: Slider-crank mechanism ; nonlinear resonance ; dynamic stability ; method of multiple scales
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The transverse vibrations of a flexible connecting rod in an otherwise rigid slider-crank mechanism are considered. An analytical approach using the method of multiple scales is adopted and particular emphasis is placed on nonlinear effects which arise from finite deformations. Several nonlinear resonances and instabilities are investigated, and the influences of important system parameters on these resonances are examined in detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 6 (1994), S. 391-417 
    ISSN: 1573-269X
    Keywords: Tracked vehicles ; recursive methods ; augmented formulation ; multibody dynamics ; Lagrangian dynamics ; singular configurations ; numerical methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In this investigation, the solution of the nonlinear dynamic equations of the multibody tracked vehicle systems are obtained using different procedures. In the first technique, which is based on the augmented formulation that employes the absolute Cartesian coordinates and Lagrange multipliers, the generalized coordinate partitioning of the constraint Jacobian matrix is used to determine the independent coordinates and the associated independent differential equations. An iterative Newton-Raphson algorithm is used to solve the nonlinear constraint equations for the dependent variables. The numerical problems encountered when one set of independent coordinates is used during the simulation of large scale tracked vehicle systems are demonstrated and their relationship to the track dynamics is discussed. The second approach employed in this investigation is the velocity transformation technique. One of the versions of this technique is discussed in this paper and the numerical problems that arise from the use of inconsistent system of kinematic equations are reported. In the velocity transformation technique, the tracked vehicle system is assumed to consist of two kinematically decoupled subsystems; the first subsystem consists of the chassis, the rollers, the sprocket and the idler, while the second subsystem consists of the track which is represented as a closed kinematic chain that consists of rigid links connected by revolute joints. It is demonstrated that the use of one set of recursive equations leads to numerical difficulties because of the change in the track configuration. Singular configurations can be avoided by repeated changes in the recursive equations. The sensitivity of the predictor-corrector multistep numerical integration schemes to the method of formulating the state equations is demonstrated. The numerical results presented in this investigation are obtained using a planner tracked vehicle model that consists of fifty four rigid bodies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-269X
    Keywords: Nonlinear dynamics ; control structure interaction ; multibody dynamics ; finite element method ; Lagrangian dynamics ; and inverse dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The inverse dynamics problem for articulated structural systems such as robotic manipulators is the problem of the determination of the joint actuator forces and motor torques such that the system components follow specified motion trajectories. In many of the previous investigations, the open loop control law was established using an inverse dynamics procedure in which the centrifugal and Coriolis inertia forces are linearized such that these forces in the flexible model are the same as those in the rigid body model. In some other investigations, the effect of the nonlinear centrifugal and Coriolis forces is neglected in the analysis and control system design of articulated structural systems. It is the objective of this investigation to study the effect of the linearization of the centrifugal and Coriolis forces on the nonlinear dynamics of constrained flexible mechanical systems. The virtual work of the inertia forces is used to define the complete nonlinear centrifugal and Coriolis force model. This nonlinear model that depends on the rate of the finite rotation and the elastic deformation of the deformable bodies is used to obtain the solution of the inverse dynamics problem, thus defining the joint torques that produce the desired motion trajectories. The effect of the linearization of the mass matrix as well as the centrifugal and Coriolis forces on the obtained feedforward control law is examined numerically. The results presented in this investigation are obtained using a slider crank mechanism with a flexible connecting rod.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...