ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • method of multiple scales  (4)
  • Hopf bifurcation  (3)
  • 1990-1994  (7)
  • 1
    ISSN: 1573-269X
    Keywords: Hopf bifurcation ; multiple scales ; limit cycles ; internal resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study motions near a Hopf bifurcation of a representative nonconservative four-dimensional autonomous system with quadratic nonlinearities. Special cases of the four-dimensional system represent the envelope equations that govern the amplitudes and phases of the modes of an internally resonant structure subjected to resonant excitations. Using the method of multiple scales, we reduce the Hopf bifurcation problem to two differential equations for the amplitude and phase of the bifurcating cyclic solutions. Constant solutions of these equations provide asymptotic expansions for the frequency and amplitude of the bifurcating limit cycle. The stability of the constant solutions determines the nature of the bifurcation (i.e., subcritical or supercritical). For different choices of the control parameter, the range of validity of the analytical approximation is ascertained using numerical simulations. The perturbation analysis and discussions are also pertinent to other autonomous systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 3 (1992), S. 261-271 
    ISSN: 1573-269X
    Keywords: Scaling behavior ; coupled nonlinear oscillator ; method of multiple scales ; Duffing equation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The scaling of the solution of coupled conservative weakly nonlinear oscillators is demonstrated and analyzed through evaluating the normal modes and their bifurcation with an equivalent linearization technique and calculating the general solutions with a method of multiple seales. The scaling law for coupled Duffing oscillators is that the coupling intensity should be proportional to the total energy of the system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-269X
    Keywords: Autoparametric resonance ; torus ; chaos ; Hopf bifurcation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract An investigation is presented of the response of a three-degree-of-freedom system with quadratic nonlinearities and the autoparametric resonances ω3≈2ω2 and ω2≈2ω1 to a harmonic excitation of the third mode, where the ω m are the linear natural frequencies of the system. The method of multiple scales is used to determine six first-order nonlinear ordinary differential equations that govern the time variation of the amplitudes and phases of the interacting modes. The fixed points of these equations are obtained and their stability is determined. For certain parameter values, the fixed points are found to lose stability due to Hopf bifurcations and consequently the system exhibits amplitude-and phase-modulated motions. Regions where the amplitudes and phases display periodic, quasiperiodic, and chaotic time variations and hence regions where the overall system motion is periodically, quasiperiodically, and chaotically modulated are determined. Using various numerical simulations, we investigated nonperiodic solutions of the modulation equations using the amplitudeF of the excitation as a control parameter. As the excitation amplitudeF is increased, the fixed points of the modulation equations exhibit an instability due to a Hopf bifurcation, leading to limit-cycle solutions of the modulation equations. AsF is increased further, the limit cycle undergoes a period-doubling bifurcation followed by a secondary Hopf bifurcation, resulting in either a two-period quasiperiodic or a phase-locked solution. AsF is increased further, there is a torus breakdown and the solution of the modulation equations becomes chaotic, resulting in a chaotically modulated motion of the system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-269X
    Keywords: Nonlinear vibration of a beam ; three mode interaction ; mid-plane stretching ; method of multiple scales
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies,ωn . Three mode interaction (ω2 ≈ 3ω1 and ω3 ≈ ω1 + 2ω2) is considered and its influence on the response is studied. The case of two mode interaction (ω2 ≈ 3ω1) is also considered to compare it with the case of three mode interaction. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is applied to solve the system. Steady-state responses and their stability are examined. Results of numerical investigations show that there exists no significant difference between both modal interactions' influences on the responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-269X
    Keywords: Beam ; gravity effect ; method of multiple scales ; nonlinear oscillations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract A critical problem in designing large structures for space applications, such as space stations and parabolic antennas, is the limitation of testing these structures and their substructures on earth. These structures will exhibit very high flexibilities due to the small loads expected to be encountered in orbit. It has been reported in the literature that the gravitational sag effect under dead weight is of extreme importance during ground tests of space-station structural components [1–4]. An investigation of a horizontal, pinned-pinned beam with complete axial restraint and undergoing large-amplitude oscillations about the statically deflected position is presented here. This paper presents a solution for the frequency-amplitude relationship of the nonlinear free oscillations of a horizontal, immovable-end beam under the influence of gravity. The governing equation of motion used for the analysis is the Bernoulli-Euler type modified to include the effects of mid-plane stretching and gravity. Boundary conditions are simply supported such that at both ends there is no bending moment and no transverse and axial displacements. These boundary conditions give rise to an initial tension in the statically deflected shape. The displacement function consists of an assumed space mode using a simple sine function and unknown amplitude which is a function of time. This assumption provides for satisfaction of the boundary conditions and leads to an ordinary differential equation which is nonlinear, containing both quadratic and cubic functions of the amplitude. The perturbation method of multiple scales is used to provide an approximate solution for the fundamental frequency-amplitude relationship. Since the beam is initially deflected the small-amplitude fundamental natural frequency always increases relative to the free vibration situation provided in zero gravity. The nonlinear equation provides for interactions between frequency and amplitude in that both hardening and softening effects arise. The coefficient of the quadratic term in the nonlinear equation arises from the static (dead load) portion of the deflection. This quadratic term, depending upon its magnitude, introduces a softening effect that overcomes the hardening term (due to initial axial tension developed by deflection) for large slenderness ratios. For very large slender, immovable-end beams, the fundamental natural frequency is greater than that of beams without axial constraints undergoing small amplitude oscillations. This phenomenon is attributed to the stiffening effect of the statically-induced axial tension. However, the stiffening effect of axial tension in beams with slenderness ratios greater than approximately 392 undergoing large-amplitude symmetric-mode oscillations is overpowered by the presence of gravitational loading.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-269X
    Keywords: Bifurcation to chaos ; intermittencies ; Hopf bifurcation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The chaotic dynamics of a single-degree-of-freedom nonlinear mechanical system under periodic parametric excitation is investigated. Besides the well known type-I and type-III intermittent transitions to chaos we give numerical evidence that the system can follow an alternative route to chaos via intermittency from an equilibrium state to a chaotic one, which was not found in the previous simulations of the dynamics of the system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-269X
    Keywords: Slider-crank mechanism ; nonlinear resonance ; dynamic stability ; method of multiple scales
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The transverse vibrations of a flexible connecting rod in an otherwise rigid slider-crank mechanism are considered. An analytical approach using the method of multiple scales is adopted and particular emphasis is placed on nonlinear effects which arise from finite deformations. Several nonlinear resonances and instabilities are investigated, and the influences of important system parameters on these resonances are examined in detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...