ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (279)
  • Geomagnetism, Rock Magnetism and Palaeomagnetism  (159)
  • Materials Science  (120)
  • Geosciences  (279)
  • Economics
  • 11
    Publication Date: 2015-05-16
    Description: Galvanic distortion of magnetotelluric (MT) data due to small-scale surficial bodies or due to topography is one of the major factors that prevents accurate imaging of the subsurface. We present a 3-D algorithm for joint inversion of MT impedance tensor data and a frequency-independent full distortion matrix that circumvents this problem. We perform several tests of our algorithm on synthetic data affected by different amounts of distortion. These tests show that joint inversion leads to a better conductivity model compared to the inversion of the MT impedance tensor without any correction for distortion effects. For highly distorted data, inversion without any distortion correction results in strong artefacts and we cannot fit the data to the specified noise level. When the distortion is reduced, we can fit the data to an RMS of one, but still observe artefacts in the shallow part of the model. In contrast, in both cases our joint inversion can fit the data within the assumed noise level and the resulting models are comparable to the inversion of undistorted data. In addition, we show that the elements of the full distortion matrix can be well resolved by our algorithm. Finally, when inverting undistorted data, including the distortion matrix in the inversion only results in a minor loss of resolution. We therefore consider our new approach a promising tool for the general analysis of field MT data.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-05-16
    Description: The magnetic field that originates in the earth's core is transformed across the electrically conducting mantle before being observed, at the earth's surface or above. Assuming that the conductivity depends only on radius, it has been customary to treat the mantle as a linear time-invariant filter for the core magnetic field, with properties (as a function of the frequency ) specified by the transfer function (). An high-frequency approximation to (), which is derived from a three terms WKBJ expansion with –1/2 as small parameter, is found here to reproduce adequately, for low harmonic degrees and/or thin conducting layers, the exact solution, which is evaluated numerically. It is contrasted with the low-frequency estimation of , which consists in a perturbation procedure and in writing () as a series in powers of ( -〉 0). The low-frequency theory is applied to the magnetic variations produced by the geostrophic core flows with about 6 yr period as the phase of these flows is independently determined from their effect on the length of the day. Apart from that, the low-frequency approximation overestimates the screening by the mantle of high-frequency signals, especially the low harmonic degree ones. In practice, the attenuating factor defined from the O ( 2 ) term in the expansion of as -〉 0 cannot be retrieved from analyses of geomagnetic time-series. Application of the mantle filter theory hinges on our knowledge about the time spectrum of the magnetic field at the core surface. The low-frequency theory had been previously applied to observatory series on the assumption that geomagnetic jerks occurring in the core are rare and isolated events. Rather than following up these earlier studies, I note that the spectral density function for the second time derivative of the main magnetic field coefficients is approximately independent of in a frequency range for which the mantle has undoubtedly negligible influence. In the absence of any other information, this scaling law is extrapolated to higher frequencies.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-12-17
    Description: Surface nuclear magnetic resonance (surface-NMR) is a promising technique for exploring shallow subsurface aquifer structures. Surface-NMR can be applied in environments that are characterized as a 1-D layered Earth. The technique utilizes a single loop and is referred to as magnetic resonance sounding. The technique referred to as magnetic resonance tomography (MRT) allows complex 2-D aquifer structures to be explored. Currently, MRT requires multiple loops and a roll along measurement scheme, which causes long survey time. We propose a loop layout using an elongated transmitter and an in-loop receiver arrays (ETRA) to conduct a 2-D survey with just one measurement. We present a comprehensive comparison between the new layout and the common approaches based on sensitivity and resolution analyses and show synthetic and field data. The results show that ETRA generates subsurface images at sufficient resolution with significantly lower survey times than other loop layouts.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-11-09
    Description: We studied ionospheric responses to the 2012 April 11 M w 8.6 North Sumatra earthquake using total electron content (TEC) measurements with the regional Global Navigation Satellite System network. This earthquake ruptured the oceanic lithosphere off the Indian Ocean coast of North Sumatra, and is known as the largest strike-slip earthquake ever recorded. Coseismic ionospheric disturbances (CIDs) with rapid TEC enhancement of a few TEC units propagated northward with a speed of acoustic waves (~1 km s –1 ). Resonant atmospheric oscillation with a frequency ~4 mHz have been found as monochromatic oscillation of TEC lasting for an hour after the main shock and the largest aftershock. We compared CID amplitudes of 21 earthquakes world-wide with moment magnitudes ( M w ) 6.6–9.2. They roughly obeyed a law such that CID amplitude increases by two orders of magnitude for the M w increase of three. The 2012 North Sumatra earthquakes slightly deviated negatively from the trend possibly reflecting their strike-slip mechanisms, that is small vertical crustal movements for their magnitudes.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-03-11
    Description: The magnetic field of the Earth's lithosphere arises from rock magnetization contrasts that were shaped over geological times. The field can be described mathematically in spherical harmonics or with distributions of magnetization. We exploit this dual representation and assume that the lithospheric field is induced by spatially varying susceptibility values within a shell of constant thickness. By introducing a statistical assumption about the power spectrum of the susceptibility, we then derive a statistical expression for the spatial power spectrum of the crustal magnetic field for the spatial scales ranging from 60 to 2500 km. This expression depends on the mean induced magnetization, the thickness of the shell, and a power law exponent for the power spectrum of the susceptibility. We test the relevance of this form with a misfit analysis to the observational NGDC-720 lithospheric magnetic field model power spectrum. This allows us to estimate a mean global apparent induced magnetization value between 0.3 and 0.6 A m –1 , a mean magnetic crustal thickness value between 23 and 30 km, and a root mean square for the field value between 190 and 205 nT at 95 per cent. These estimates are in good agreement with independent models of the crustal magnetization and of the seismic crustal thickness. We carry out the same analysis in the continental and oceanic domains separately. We complement the misfit analyses with a Kolmogorov–Smirnov goodness-of-fit test and we conclude that the observed power spectrum can be each time a sample of the statistical one.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-04-07
    Description: Data on the evolution of Earth's magnetic field intensity are important for understanding the geodynamo and planetary evolution. However, the paleomagnetic record in rocks may be adversely affected by many physical processes, which must be taken into account when analysing the palaeointensity database. This is especially important in the light of an ongoing debate regarding core thermal conductivity values, and how these relate to the Precambrian geodynamo. Here, we demonstrate that several data sets in the Precambrian palaeointensity database overestimate the true paleofield strength due to the presence of non-ideal carriers of palaeointensity signals and/or viscous re-magnetizations. When the palaeointensity overestimates are removed, the Precambrian database does not indicate a robust change in geomagnetic field intensity during the Mesoproterozoic. These findings call into question the recent claim that the solid inner core formed in the Mesoproterozoic, hence constraining the thermal conductivity in the core to ‘moderate’ values. Instead, our analyses indicate that the presently available palaeointensity data are insufficient in number and quality to constrain the timing of solid inner core formation, or the outstanding problem of core thermal conductivity. Very young or very old inner core ages (and attendant high or low core thermal conductivity values) are consistent with the presently known history of Earth's field strength. More promising available data sets that reflect long-term core structure are geomagnetic reversal rate and field morphology. The latter suggests changes that may reflect differences in Archean to Proterozoic core stratification, whereas the former suggest an interval of geodynamo hyperactivity at ca. 550 Ma.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-01-11
    Description: Red Clay underlying the loess-palaeosol sequences on the Chinese Loess Plateau is an eolian deposit. There is a controversy over whether magnetic susceptibility ( ) variations in Red Clay sequence can be used as an indicator of summer palaeomonsoon intensity. This study investigates the magnetic mineralogy, magnetic concentration and magnetic grain size distribution of Jiaxian Red Clay with multimagnetic methods. Our results indicate that the magnetic properties of Jiaxian Red Clay are similar to those of the Quaternary loess-palaeosol sequences, and ultrafine ferrimagnetic grains produced during pedogenesis are responsible for an increase in susceptibility, therefore the enhancement mechanism of Red Clay is similar to that of the overlying loess-palaeosol sequences. This paper explores variations in the Red Clay sequence through spatial and temporal analysis. The susceptibility variation of six sites along a NNE to SSW transect correlate to palaeoclimatic cycles, so can be used to trace the summer palaeomonsoon intensity from a spatial perspective. However, a simple loess-derived calibration function cannot be used to quantitative reconstruct the palaeomonsoon intensity variations thought time. An adjusted calibration function for palaeosols from Red Clay sequence needs to be developed, so that can be used to quantitative reconstruct palaeomonsoon intensity. Further study is necessary to develop such a transfer function.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-03-09
    Description: Palaeointensity experiments were carried out to a sample collection from two sections of basalt lava flow sequences of Pliocene age in north central Iceland (Chron C2An) to further refine the knowledge of the behaviour of the palaeomagnetic field. Selection of samples was mainly based on their stability of remanence to thermal demagnetization as well as good reversibility in variations of magnetic susceptibility and saturation magnetization with temperature, which would indicate the presence of magnetite as a product of deuteric oxidation of titanomagnetite. Among 167 lava flows from two sections, 44 flows were selected for the Königsberger–Thellier–Thellier experiment in vacuum. In spite of careful pre-selection of samples, an Arai plot with two linear segments, or a concave-up appearance, was often encountered during the experiments. This non-ideal behaviour was probably caused by an irreversible change in the domain state of the magnetic grains of the pseudo-single-domain (PSD) range. This is assumed because an ideal linear plot was obtained in the second run of the palaeointensity experiment in which a laboratory thermoremanence acquired after the final step of the first run was used as a natural remanence. This experiment was conducted on six selected samples, and no clear difference between the magnetic grains of the experimented and pristine sister samples was found by scanning electron microscope and hysteresis measurements, that is, no occurrence of notable chemical/mineralogical alteration, suggesting that no change in the grain size distribution had occurred. Hence, the two-segment Arai plot was not caused by the reversible multidomain/PSD effect in which the curvature of the Arai plot is dependent on the grain size. Considering that the irreversible change in domain state must have affected data points at not only high temperatures but also low temperatures, f v ≥ 0.5 was adopted as one of the acceptance criteria where f v is a vectorially defined fraction of the linear segment. A measure of curvature k ' was also used to check the linearity of the selected linear segment. It was avoided, however, to reject the result out of hand by the large curvature k of the entire data points because it might still include a linear segment with a large fraction. Combining with the results of Shaw's experiments, 52 palaeointensities were obtained out of 192 specimens, or 11 flow means were obtained out of the 44 lava flows. Most of the palaeointensities were from the upper part of the lava section (Chron C2An.1n) and ranged between 30 and 66 μT. Including two results from the bottom part of the lava section, the mean virtual dipole moment for 2.5–3.5 Ma is 6.3 ± 1.4  x  10 22 Am 2 ( N  = 11), which is ~19 per cent smaller than the present-day dipole moment.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-12-13
    Description: The sedimentary sequence deposited during the deglaciation phase following the last glacial maximum in the Storfjorden trough, on the northwestern Barents Sea south of Svalbard, was sampled with 10 piston and gravity cores during the SVAIS and EGLACOM cruises. Three cores (SV-02, SV-03 and SV-05) collected on the upper continental slope are characterized by a thin (20–40 cm) Holocene interval and a thick (up to 4.5 m in core SV-03) late Pleistocene sequence of finely laminated fine-grained sediments that have been interpreted as plumites deposited during the Melt Water Pulse 1a (MWP-1a). Radiocarbon ages obtained at the top and bottom of this stratigraphic interval revealed that deposition occurred during less than two centuries at around 15 ka ago, with a very high sedimentary rate exceeding 3 cm a –1 . We studied the palaeomagnetic and rock magnetic properties of this interval, by taking magnetic measurements at 1 cm spacing on u-channel samples collected from the three cores. The data show that this sequence is characterized by good palaeomagnetic properties and the palaeomagnetic and rock magnetic trends may be correlated at high resolution from core to core. The obtained palaeomagnetic data therefore offer the unique opportunity to investigate in detail the rate of geomagnetic palaeosecular variation (PSV) in the high northern latitudes at a decadal scale. Notwithstanding the palaeomagnetic trends of the three cores may be closely matched, the amplitude of directional PSV and the consequent virtual geomagnetic pole (VGP) scatter (S) is distinctly higher in one core (SV-05) than in the other two cores (SV-02 and SV-03). This might result from a variable proportion of two distinct populations of magnetic minerals in core SV-05, as suggested by the variable tendency to acquire a gyromagnetic remanent magnetization at high fields during the AF demagnetization treatment. For the plumite interval of cores SV-02 and SV-03, where the magnetic mineralogy is uniform and magnetite is the main magnetic carrier, a S value of about 9° is obtained. We consider this value as a reliable approximation of palaeomagnetic secular variation at a latitude of 75°N over a time interval spanning a couple of centuries around 15 ka ago.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-12-13
    Description: A recent study of the Matuyama–Brunhes (M-B) geomagnetic field reversal recorded in exposed lacustrine sediments from the Sulmona Basin (Italy) provided a continuous, high-resolution record indicating that the reversal of the field direction at the terminus of the M-B boundary (MBB) occurred in less than a century, about 786 ka ago. In the sediment, thin (4–6 cm) remagnetized horizons were recognized above two distinct tephra layers—SUL2-19 and SUL2-20—that occur ~25 and ~35 cm below the MBB, respectively. Also, a faint, millimetre-thick tephra (SUL2-18) occurs 2–3 cm above the MBB. With the aim of improving the temporal resolution of the previous Sulmona MBB record and understanding the possible influence of cryptotephra on the M-B record in the Sulmona Basin, we performed more detailed sampling and analyses of overlapping standard and smaller samples from a 50 cm-long block that spans the MBB. The new data indicate that (i) the MBB is even sharper than previously reported and occurs ~2.5 cm below tephra SUL2-18, in agreement with the previous study; (ii) the MBB coincides with the rise of an intensity peak of the natural remanent magnetization (NRM) intensity, which extends across SUL2-18; (iii) except for a 2-cm-thick interval just above tephra SUL2-18, the rock magnetic parameters ( k , ARM, M r , M s , B c , B cr ) indicate exactly the same magnetic mineralogy throughout the sampled sequence. We conclude that either SUL2-18 resulted in the remagnetization of an interval of about 6 cm (i.e. during the NRM intensity peak spanning ~260 ± 110 yr, according to the estimated local sedimentation rate), and thus the detailed MBB record is lost because it is overprinted, or the MBB is well recorded, occurred abruptly about 2.5 cm below SUL2-18 and lasted less than 13 ± 6 yr. Both hypotheses challenge our understanding of the geomagnetic field behaviour during a polarity transition and/or of the NRM acquisition process in the Sulmona lacustrine sediment.
    Keywords: Geomagnetism, Rock Magnetism and Palaeomagnetism
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...