Publication Date:
2019-06-28

Description:
We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (e.g., reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 1.2 without impulse-amplitude reduction). We use our simulation results also to map phase-space densities f in accordance with Liouville's theorem. We find that the stormtime transport of approximately greater than 145-keV ions produces little change in f-bar the drift-averaged phase-space density on any drift shell of interest. However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies approximately 30-145 keV, which are representative of the stormtime ring current.

Keywords:
GEOPHYSICS

Type:
NASA-CR-199540
,
NAS 1.26:199540
,
ATR-92(7251)-3

Format:
application/pdf

Permalink