ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (21,935)
  • 1
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: At the last International Reference Ionosphere (IRI) Workshop it was decided that future editions of the model should include a representationof the aurroral oval boundaries. In this paper we review the different existing parameterizations of the auroral oval discussing their data base, boundary criteria, matematical formation, and overall usefulness for IRI. As a first candidate for incorporation into IRI we recomment the parameterization of the Feldstein ovals by Holzworth and Meng. Ways of implementing this model into IRI are discussed. We will also address adjustability with user-provided boundaries or boundary-related parameters, to better support strom-related studies.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 1; p. (1)13-(1)16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-02
    Description: Measurements by single-frequency satellite altimeter (Geosat, ERS-1) require a ionospheric correction to account for the signal time delay in the ionosphere. We propose using the International Reference Ionosphere (IRI) for the determination of this time delay. To investigate the effectiveness of an IRI correction, we have compared the IRI values with ionospheric corrections deduce from measurements by the dual-frequency Topex altimeter. By measuring at two frequencies, the Topex instrument can record (and thus eliminate) the ionospheric influence. We find that IRI agrees with the Topex data much better than the model that is currently used in Geosat data analysis. In particular the earlier model does not represent the equatorial double-peak (equator anomaly) clearly seen in the Topex data. Overall, the use of IRI results in a 30% improvement (over the older model) in the accuracy of ionospheric corrections computed for the first year of the Topex mission.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 2; p. 113-119
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: This paper was presented during the special session that was held at the 1993 International Reference Ionosphere (IRI) Workshop in honor of Karl Rawer's 80th birthday. It retraces the steps that led from the start of the IRI project to the present edition of the model highlighting the important role that the honoree played in guiding IRI from infancy to maturity. All summary view graphs are reproduced at the end of the article.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 2; p. 7-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-03-30
    Description: An international conference on high-latitude ionospheric modeling produced 27 papers in the areas of ionospheric mapping, electron density and distribution, ion density and distribution, ionospheric storems, ionospheric composition, and ionospheric sounding techniques. Upgrades to the International Reference Ionosphere (IRI) model were proposed in several papers.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-29
    Description: Papers from the conference are presented and cover the following topics: ion and electron beams; ionospheric modification; spacecraft interactions; chemical releases; and plasma waves. Auroras and plasma emissions are reported from electron beam injection experiments on the EXCEDE 3 rocket and APEX satellite respectively. The important parameters affecting the charging of spacecraft during the operation of electron guns is covered. The Active Magnetospheric Particle Acceleration Satellite (AMPAS) mission utilizing dual-payload tethered satellites and both up and downward directed electron beams is proposed to study the magnetosphere. Recent results and associated theories from the Sura, Arecibo and Troms ionospheric heating facitlites are presented. The effects of neutral gases on spacecraft charging are examined in a series of rocket flights. Many results from the Combined Release and Radiation Effects Satellite chemical release experiments are presented.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-29
    Description: The main subject of the symposium was 'off-median phenomena'. The title denotes a range of problems that are rarely considered in 'pure science' studies of the ionosphere. The appearance of regular ionospheric variations is well known. Most of these depend on evident solar-geophysical influences like day and night, solar zenith angle, the seasons, geomagnetic control, solar activity, etc. Applicants and theoreticians as well used to work with monthly medians so that the in fact existing and quite important day-to-day variability is systematically overlooked. It is evident that a descriptive model like the International Reference Ionosphere (IRI) would be inadequate if this variability were denied. Interesting contributions from the symposium on 'off-median phenomena' and the IRI are presented.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: We present measurements of the middle atmospheric water vapor mixing ratio profile obtained using the ground-based Naval Research Laboratory (NRL) water vapor millimeter-wave spectrometer (WVMS) instrument at the Jet Propulsion Laboratory (JPL) Table Mountain Observatory. The measurements cover a period of 262 days from January 23, 1992, to October 13, 1992. During this campaign it was possible to retrieve useful daily mixing ratio profiles for 186 days. We thus have a nearly continuous record of water vapor mixing ratios for altitudes from approximately equals 35 to 75 km. The retrievals are obtained using the optimal estimation method. Details of the error analysis are presented, and a technique is introduced that reduces baseline effects and helps to estimate the baseline error. The high-altitude (greater than or approx. equal to 65 km) data show a sharp rise prior to the expected maximum near the summer solstice and a gradual decline in the following months. The mixing ratios generally peak between 55 and 65 km, at which point the mixing ratios are 6 - 7 parts per million by volume. The highest peaks occur in January, May, and October.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D2; p. 2927-2939
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Numerical simulations of mantle convection with a composite temperature-dependent, Newtonian and non-Newtonian creep law have revealed a transition in the dominant creep mechanism with the increasing vigour of convection. Newtonian creep is found to dominate in the low Rayleigh number regime. With sufficiently high effective Rayleigh number, the overall creep mechanism in the convective flow becomes non-Newtonian. The transitional Rayleigh number increases strongly with the activation energy. These results would suggest a scenario that in the early epochs of Earth the flow in the mantle would have been governed by non-Newtonian rheology and would have exhibited both strong spatial and temporal fluctuations. With time the flow mechanism would behave like a Newtonian fluid and would have a different time-dependent character. In time-dependent Newtonian-dominated flows there are still localized features with distinctly non-Newtonian character. Our analysis of the relative contributions to the lateral viscosity field supports the idea that the inference of the nature of lateral viscosity heterogeneities by seismic tomography may be strongly contaminated by the dominant non-Newtonian contributions to the total lateral viscosity field.
    Keywords: GEOPHYSICS
    Type: Earth and Planetary Science Letters (ISSN 0012-821X); 129; 1-4; p. 249-260
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2019-04-02
    Description: A data base comprised of all available ionosphere satellite ion composition measurements - the Goddard Comprehensive Ionosphere Data Base (GCID) - has been set upon optical disks for convenient merging and accessing of data from different satellites. This data has recentely been expanded to include all accessible satellite electron density and plasma temperature measurements. This paper demonstrates with a couple examples, the potential of GCID as an alternative to empirical models for undertanding ionsophere physics and chemistry. Through binning techniques GCID provdes a tool that complements and improves on the International Reference Ionosphere model (IRI) in delineating the topology of high latitude ion composition. GCID provides at a glance a measure of the local statistical variabilty of the ion compostions that is not in empirical models such as IRI. Furthermusing the data to determine the spatial and geophysical parameter range over which the minor ion species are approximately in chemical equilibrium, the number of data points available for empirical ion composition models can be increased by using the statiscally more reliable neutral and electron empirical models to derive ions composition. Currently available empirical models are not capable of adequately defining the comples high latitude distribution - a measure of the variablity is needed.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 1; p. (1)95-(1)104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Compressional magnetic pulsations with irregular waveforms and periods longer than 150 s (here termed Pi 3) have been studied by using data from Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE/CCE) and GOES 5 and 6 in the dayside magnetosphere and compared with signatures on the ground at low latitudes by using data from Kakioka station (L = 1.25). On the ground, the pulsations appear in the horizontal component. A study of 17 such concurrent events during a 2-month period in 1986 reveals the following pulsation characteristics. (1) The peak-to-peak amplitudes in space (delta B(sub T)) and on the ground (delta H) are comparable and are in the range of 0.5-7 nT. (2) On the ground the pulsations can be seen at all local times, even at midnight, while at geostationary orbit they are observed only on the dayside with a clear amplitude maximum at noon. (3) The pulsations on the ground lag those observed by CCE near local noon, and the lag increases as the local time separation between CCE and the ground station increases. The time lag is 1-2 min longer when the ground station is on the nightside than when it is on the dayside. (4) The time lag between pulsations observed at geostationary orbit and near noon by CCE varies systematically with local time and is about 2 min per 6 hours of local time separation. These observations indicate that some nightside pulsations in the Pi 3 band have dayside origins. The position dependence of the pulsation amplitude can be explained well by changes in the magnetopause current, which are in turn presumably caused by changes in the solar wind dynamic pressure. The time lags observed in space are consistent with signal propagation in the MHD fast mode, but the variation in space-ground time lags with ground station local time must be attributed to another mechanism.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 12,103-12,115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: The eruption of Mt. Pinatubo in June 1991 produced the largest enhancement of stratospheric aerosol loading ever observed by lidar over Hampton, Virginia. Low altitude layers (less than 20 km) were the first to arrive over Hampton in early August, the result of transport associated with a tropospheric anticyclonic cell over North America. The maximum peak scattering ratio, 34 at 22.4 km, and the maximum stratospheric integrated backscatter of 0.0053 sr(exp -1), both at 694 nm, observed since the eruption were measured on February 20, 1992. After decreasing during the spring and summer of 1992, the aerosol burden increased significantly during the winter of 1992-93, evidence of a poleward winter transport from the equatorial reservoir. Over the period from February 1992 to February 1994, the stratospheric aerosol loading decreased with an average 1/e decay time of 10.1 months. The vertical distribution, intensity, and transport of Pinatubo aerosols over this site are described and compared with similar measurements after El Chichon.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 9; p. 1101-1104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Azimuthal asymmetries in the atmospheric refractive index can lead to errors in estimated vertical and horizontal station coordinates. Daily average gradient effects can be as large as 50 mm of delay at a 7 deg elevation. To model gradients, the constrained estimation of gradient paramters was added to the standard VLBI solution procedure. Here the analysis of two sets of data is summarized: the set of all geodetic VLBI experiments from 1990-1993 and a series of 12 state-of-the-art R&D experiments run on consecutive days in January 1994. In both cases, when the gradient parameters are estimated, the overall fit of the geodetic solution is improved at greater than the 99% confidence level. Repeatabilities of baseline lengths ranging up to 11,000 km are improved by 1 to 8 mm in a root-sum-square sense. This varies from about 20% to 40% of the total baseline length scatter without gradient modeling for the 1990-1993 series and 40% to 50% for the January series. Gradients estimated independently for each day as a piecewise linear function are mostly continuous from day to day within their formal uncertainties.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 9; p. 1041-1044
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: This paper describes an efficient Monte Carlo algorithm for choosing a new direction of a photon after a scattering interaction. The algorithm chooses a scattering angle by linear interpolation in a table of the inverse cumulative scattering probability. A Legendre expansion of the phase function makes it easy to apply Clenshaw's algorithm to build the interpolation table. The points in the table are close enough together that linear interpolation is accurate. With a table of 100,000 entries, we can keep the absolute and relative errors in matching the probability distribution below 10(exp -5).
    Keywords: GEOPHYSICS
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 53; 1; p. 23-38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: We report multi-instrument observations during an isolated substorm on 17 October 1989. The European Incoherent Scatter (EISCAT) radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71 deg Lambda - 78 deg Lambda. Sub-Auroral Magnetometer Network (SAMNET) and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. Interplanetary Monitoring Platform-8 (IMP-8) magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF). We infer that the polar cap expanded as a result of the addition of open magnetic flux in the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71 deg Lambda by the time of the expansion phase onset. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the distant neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase.
    Keywords: GEOPHYSICS
    Type: Annales Geophysicae (ISSN 0992-7689); 13; 2; p. 147-158
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: The effects on double-probe electric field measurements induced by electron density and temperature gradients are investigated. We show that on some occasions such gradients may lead to marked spurious electric fields if the probes are assumed to lie at the same probe potential with repect to the plasma. The use of a proper bias current will decrease the magnitude of such an error. When the probes are near the plasma potential, the magnitude of these error signals, delta Epsilon, can vary as delta Epsilon approx. T(sub e)(Delta n(sub e)/n(sub e)) + 0.5 Delta T(sub e), where T(sub e) is the electron temperature, Delta n(sub e)/ n(sub e) the relative electron density variation between the two sensors, and Delta T(sub e) the electron temperature difference between the two sensors. This not only implies that the error signals will increase linearly with the density variations but also that such signatures grow with Delta T(sub e) i.e., such effects are 10 times larger in a 10-eV plasma than in a 1-eV plasma. This type of error is independent of the probe separation distance provided the gradient scale length is much larger than the distance. The largest errors occur when the probes are near to the plasma potential. During the crossing of a small structure (e.g, a double layer) the error signal appears as a bipolar signature. Our analysis shows that errors in double-probe measurements caused by plasma gradients are not significant at large scale (much greater than 1 km) plasma boundaries, and may only be important in cases where small-scale (less than 1 km), internal gradient structures exist. Bias currents tailored for each plasma parameter regime (i.e., variable bias current) would improve the double-probe response to gradient effects considerably.
    Keywords: GEOPHYSICS
    Type: Annales Geophysicae (ISSN 0992-7689); 13; 2; p. 130-146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Radiation resulting from interaction between the effluent cloud of a space shuttle thruster and the ambient atmosphere was observed with a spectograph aboard the shutttle. The spectral measurements were made between 400 and 800 nm with a resolutoion of 3 nm. The primary emissions are identified as NO2, HNO, O(1)D, and O(1)S. These are the first observations od O(1)S emission in the shuttle plume. These data are compared with the previous measurements, and possible excitation mechanisms are discussed. The results are also compared with a Monte Carlo simulation of thruster plume-atmosphere interaction radiation.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5819-5825
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: New investigations of the core ion motion within high-latitude topside ionosphere and near-Earth magnetosphere, using data from the Dynamics Explorer (DE) retarding ion mass spectrometer (RIMS), reveal the existence of significant regions of downward moving O(+). The occurences of downgoing versus upgoing O(+) are not clearly separable in terms of either polar zenith angle or Kp but are well distinquished by the direction of the z component of the interplanetary magnetic field (IMF). On the average, down flow dominates when IMFB2 less than O, while upflow dominates for IMFB2 greater than 0. Combining cross-field convection velocities derived from an empirical convection electric field model with the observed parallel velocities yields a two dimensional ion velocity field. This velocity field is consistent with a senario which has O(+) of cusp/cleft and auroral zone origin concvecting into the polar cap and, because of the dominance of gravitational energy over the upward kinetic energy, falling back into the inonsphere. This provides additional confirmation of the results of studies of the cleft ion fountain. Estimates of the flux of O(+) in the upflowing and downflowing regions for Lambda greater than or equal to 60 deg give a total upflow of approximately 6 X 10(exp 25) ions/sec for IMFB2 greater than 0 and total upflow and downflow of approximately 4 X 10 (exp 25) ions/sec and 1 x 10(exp 25) ions/sec, respectively, for IMFB less than 0. In all cases the magnitude of the dayside outflow is consistent with previous work on upwelling ions. While the magnitudes vary for high and low Kp the ratios of upward to downward flow are roughly the same at approximately 1.7. The downflowing O(+) shows a correlation with the magnitude of the outflow of light ions in the same region but the cause and effect of this relationship is not distinquishable. hable.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5795-5800
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: The relation between the solar wind input to the magetosphere, VB(sub South), and the auroral geomagnetic index AL is modeled with two linear moving-average filtering methods: linear prediction filters and a driven harmonic oscillator in the form of an electric circuit. Although the response of the three-parameter oscillator is simpler than the filter's, the methods yield similar linear timescales and values of the prediction-observation correlation and the prediction Chi(exp 2). Further the filter responses obtained by the two methods are similar in their long-term features. In these aspects the circuit model is equivalent to linear prediction filtering. This poses the question of uniqueness and proper interpretation of detailed features of the filters such as response peaks. Finally, the variation of timescales and filter responses with the AL activity level is discussed.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5637-5641
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: Empirical data-based models of the magnetosphereic magnetic field have been widely used during recent years. However, the existing models (Tsyganenko, 1987, 1989a) have three serious deficiencies: (1) an unstable de facto magnetopause, (2) a crude parametrization by the K(sub p) index, and (3) inaccuracies in the equatorial magnetotail B(sub z) values. This paper describes a new approach to the problem; the essential new features are (1) a realistic shape and size of the magnetopause, based on fits to a large number of observed crossing (allowing a parametrization by the solar wind pressure), (2) fully controlled shielding of the magnetic field produced by all magnetospheric current systems, (3) new flexible representations for the tail and ring currents, and (4) a new directional criterion for fitting the model field to spacecraft data, providing improved accuracy for field line mapping. Results are presented from initial efforts to create models assembled from these modules and calibrated against spacecraft data sets.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5599-5612
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: Plasmoids are thought to occur as a consequence of the formation of a near-Earth neutral line during the evolution of a geomagnetic substorm. Using a 3D, global MHD simulation of the interaction of the Earth's magnetosphere with the solar wind, we initiate a substorm by a southward turning of the Interplanetary Magnetic Field (IMF) after a long period of steady northward field. A large plasmoid is formed and ejected. We show field line maps of its shape and relate its formation time to the progress of the substorm as indicated by the cross polar potential. Because of the large region of closed field in the magnetotail at the time of the substorm, this plasmoid is longer in axial dimension than is typically observed. We compare the simulation results with the type of satellite observations which have been used to argue for the existence of plasmoids or of traveling compression regions (TCRs) in the lobes or magnetosheath. The simulation predicts that plasmoid passage would result in a strong signal in the cross tail electric field.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 859-862
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: The evolution of the volcanic debris plume originating from the June 1991 eruption of Mt. Pinatubo has been monitored since its genesis using a ground-based backscatter lidar facility sited at the Jet Propulsion Laboratory (JPL). Both absolute and relative pre- and post-Pinatubo backscatter observations are in accord with Mie scattering projections based on measured aerosol particle size distributions reported in the literature. The post-Pinatubo column-integrated backscatter coefficient peaked approximately 400 days after the eruption, and the observed upper boundary of the aerosol column subsided at a rate of approximately 200 m/mon.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 807-810
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Direct current (DC) electric field and ion density measurements near density depletion regions (that is, equatorial plasma bubbles) are used to estimate the vertical neutral wind speed. The measured zonal electric field in a series of density depletions crossed by the San Marco D satellite at 01.47-01.52 Universal Time (UT) on 25 October 1988, can be explained if a downward neutral wind of 15-30 m/s exists. Simultaneously, the F-region plasma was moving downward at a speed of 30-50 m/s. These events appear in the local time sector of 23.00-23.15 in which strong downward neutral winds may occur. Indeed, airglow measurements suggest that downward neutral velocities of 25-50 m/s are possible at time near midnight in the equatorial F-region.
    Keywords: GEOPHYSICS
    Type: Journal of Atmospheric and Terrestrial Physics (ISSN 0021-9169); 57; 6; p. 645-651
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: An overview of the observations of backstreaming electrons in the foreshock and the mechanisms that have been proposed to explain their properties will be presented. A primary characteristic of observed foreshock electrons is that their velocity distributions are spatially structured in a systematic way depending on distance from the magnetic field line which is tangent to the shock. There are two interrelated aspects to explaining the structure of velocity distributions in the foreshock, one involving the acceleration mechanism and the other, propagation from the source to the observing point. First, the source distribution of electrons energized by the shock must be determined along the shock surface. Proposed acceleration mechanisms include magnetic mirroring of incoming solar wind particles and mechanisms involving transmission of particles through the shock. Secondly, the kinematics of observable electrons streaming away from a curved shock with an initial parallel velocity and a downstream perpendicular velocity component due to the motional electric field must be determined. This is the context in which the observations and their explanations will be reviewed.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 8-9; p. 9-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: Measurements of superthermal electron fluxes in the solar wind indicate that field lines within coronal mass ejections, CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, on occasion some field lines embedded deep within CMEs appear to be connected to the Sun at only one end. Here we propose an explanation for how such field lines arise in terms of 3-dimensional reconnection close to the Sun. Such reconnection also provides a natural explanation for the flux rope topology characteristic of many CMEs as well as the coronal loops formed during long-duration, solar X-ray events. Our consideration of the field topologies resulting from 3-dimensional reconnection indicates that field lines within and near CMEs may on occasion be connected to the outer heliosphere at both ends.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 8; p. 869-872
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: We report here on a number of examples of anomalous enhancements of eastward electric fields near sunrise in the equatorial ionospheric F-region. These examples were selected from the data base of the equatorial satellite, San Marco D (1988), which measured ionospheric electric fields during a period of solar minimum. The eastward electric fields reported correspond to vertical plasma drifts. The examples studied here are similar in signature and polarity to the pre-reversal electric field enhancements seen near sunset from ground-based radar systems. The morphology of these sunrise events, which are observed on about 14% of the morning-side satellite passes, are studied as a function of local zonal velocity, magnetic activity, geographic longitude and altitude. The nine events studied occur at locations where the zonal plasma flow is generally measured to be eastward, but reducing as a function of local time and at satellite longitudes where the magnetic declination has the opposite polarity as the declination of the sunrise terminator.
    Keywords: GEOPHYSICS
    Type: Journal of Atmospheric and Terrestrial Physics (ISSN 0021-9169); 57; 1; p. 19-24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: The subject of this paper is a self-consistent, magnetohydrodynamic numerical realization for the Earth's magnetosphere which is in a quasi-steady dynamic equilibrium for a due northward interplanetary magnetic field (IMF). Although a few hours of steady northward IMF are required for this asymptotic state to be set up, it should still be of considerable theoretical interest because it constitutes a 'ground state' for the solar wind-magnetosphere interaction. Moreover, particular features of this ground state magnetosphere should be observable even under less extreme solar wind conditions. Certain characteristics of this magnetosphere, namely, NBZ Birkeland currents, four-cell ionospheric convection, a relatively weak cross-polar potential, and a prominent flow boundary layer, are widely expected. Other characteristics, such as no open tail lobes, no Earth-connected magnetic flux beyond 155 R(sub E) downstream, magnetic merging in a closed topology at the cusps, and a 'tadpole' shaped magnetospheric boundary, might not be expected. In this paper, we will present the evidence for this unusual but interesting magnetospheric equilibrium. We will also discuss our present understanding of this singular state.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A3; p. 3623-3635
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: A nonlinear filtering method is introduced for the study of the solar wind -- magnetosphere coupling and related to earlier linear techniques. The filters are derived from the magnetospheric state, a representation of the magnetospheric conditions in terms of a few global variables, here the auroral electrojet indices. The filters also couple to the input, a representation of the solar wind variables, here the rectified electric field. Filter-based iterative prediction of the indices has been obtained for up to 20 hours. The prediction is stable with respect to perturbations in the initial magnetospheric state; these decrease exponentially at the rate of 30/min. The performance of the method is examined for a wide range of parameters and is superior to that of other linear and nonlinear techniques. In the magnetospheric state representation the coupling is modeled as a small number of nonlinear equations under a time-dependent input.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A3; p. 3495-3512
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, observes winds, temperatures and emission rates in the upper mesosphere and thermosphere. In this paper we report on nighttime observations of the vertical distribution of the O(1S) 557.7 nm emission near the geographic equator for March/April, 1993. The airglow volume emission rate distribution is found to be strongly dependent on local time. Beginning at dusk, an intense airglow emission layer descends from a mean altitude of 95 km, reaching 89 km by midnight after which the emission rapidly decays. Shortly after midnight it reappears weakly at a higher altitude and remains at this level as the emission rate gradually increases towards dawn. This strong local time dependence leads us to conclude that the effect is tidally driven. Comparison with the Forbes (1982a,b) model suggest that total density perturbations and changes in the atomic oxygen mixing ratio may the cause of the changes in emission rate distribution between dusk and midnight. The reappearance of the emission after midnight may be caused by downward winds bringing oxygen-rich air from above.
    Keywords: GEOPHYSICS
    Type: Geopysical Research Letters (ISSN 0094-8276); 22; 3; p. 275-278
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: This paper focuses on the comparison of cloud amounts derived from an atmospheric general circulation model (AGCM), Satellite-observed clouds, and Ground-based cloud observations. Unlike Earth Radiation Budget Experiment (ERBE)-type comparisons it does not mix potential errors in the cloud amount with those in the radiation code embedded in the model. Long term cloud climatologies were used to compare global cloud amounts and regional seasonal cycles. The AGCM successfully reproduced the signatures of the warm pool and North Pacific seasonal cycle cloudiness but failed in the low stratus region off the coast of South America, a known problem for AGCMs. The data sets also reproduced the anomaly signature associated with El Nino in the warm pool region, but the model amounts were lower. Global results had a similar success rate, with the model generally producing lower total cloud compared to the satellite and in situ measurements. To compare cloud vertical distributions the cloud height may need to be validated using the corresponding radiation fields. Unfortunately there were also some large discrepancies between the two observed cloud data sets. While tremendously improved over the last decade the character of the observed cloud data sets, must be substantially enhanced before they will be useful in validating AGCMs by any but the crudest levels of comparison.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1367-1378
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: Global high-level clouds identified in Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements for January and July in the period 1985 to 1990 are compared with near-nadir-looking observations from the International Satellite Cloud Climatology Project (ISCCP). Global and zonal mean high-level cloud amounts from the two data sets agree very well, if clouds with layer extinction coefficients of less than 0.008/km at 1.02 micrometers wavelength are removed from the SAGE II results and all detected clouds are interpreted to have an average horizontal size of about 75 km along the 200 km transimission path length of the SAGE II observations. The SAGE II results are much more sensitive to variations of assumed cloud size than to variations of detection threshold. The geographical distribution of cloud fractions shows good agreement, but systematic regional differences also indicate that the average cloud size varies somewhat among different climate regimes. The more sensitive SAGE II results show that about one third of all high-level clouds are missed by ISCCP but that these clouds have very low optical thicknesses (less than 0.1 at 0.6 micrometers wavelength). SAGE II sampling error in monthly zonal cloud fraction is shown to produce no bias, to be less than the intraseasonal natural variability, but to be comparable with the natural variability at longer time scales.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1121-1135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-08-31
    Description: Movement of water as vapor in the atmosphere is a fundamental process in the Earth's hydrological cycle. Investigations of spatial and time scales of water vapor transport in the atmosphere are important areas of research. Water vapor transmits energy as a function of its abundance across the spectrum. This is shown in the 400- to 2500-nm spectral region where the transmission of the terrestrial atmosphere has been modeled using the MODTRAN radiative transfer code for a range of water vapor abundances. Based on these model results, spectra measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) have been used to investigate the movement of water vapor at 20-m spatial resolution over an 11-by-30-km area at approximately 15-minute time intervals (1.25 hours total). AVIRIS measures the upwelling spectral radiance from 400 to 2500 nm at 10-nm spectral intervals and collects images of 11-by-up-to-1000 km at 20-m spatial resolution. Data are collected at a rate of 1 km of flight line per 4.5 seconds. A set of five AVIRIS flight lines was acquired in rapid succession over Rogers Dry Lake, CA on May 18, 1993 at 18:59, 19:13, 19:29, 19:47, and 19:59 UTC. Rogers Dry lake is located 2 hours north of Los Angeles, CA at 34.84 degrees north latitude and 117.83 degrees west longitude in the Mojave Desert.
    Keywords: GEOPHYSICS
    Type: Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop; p 79-82
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: The second pulsating aurora rocket (PULSAUR 2) rocket was launched into a pulsating aurora on 9 February 1994 and carried a broad range of instruments in order to perform a study of this type of aurora. The rocket measurements were complemented with a set of ground-based measurements. The particle measurements performed in the rocket are related to the ground-based optical measurements performed along the rocket trajectory. It is found that the high energy electrons are largely in phase with the measured luminosity. The EISCAT measurements carried out during the flight are reviewed. The PULSAUR 2 campaign is described. Results concerning the auroral conditions and the particle measurements are presented.
    Keywords: GEOPHYSICS
    Type: ESA, Proceedings of 12th ESA Symposium on European Rocket and Balloon Programmes and Related Research; p 233-237
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: T-matrix computations of light scattering by polydispersions of randomly oriented nonspherical aerosols and Mie computations for equivalent spheres are compared. Findings show that even moderate nonsphericity results in suubstantial errors in the retrieved aerosol optical thickness if satellite reflectance measurements are analyzed using Mie theory. On the other hand, the use of Mie theory for nonspherical aerosols produces negligible errors in the computation of albedo and flux related quantities, provided that the aerosol size distribution and optical thickness are known beforehand. The first result can be explained by large nonspherical-spherical differences in scattering phase function, while the second result follows from small nonspherical-spherical differences in single-scattering albedo and asymmetry parameter. No cancellation of errors occurs if one consistently uses Mie theory in the retrieval algorithm and then in computing the albedo for the retrieved aerosol optical thickness.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 9; p. 1077-1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The impact of the extraterrestrial object that formed the Chicxulub crater in the northwestern Yucatan peninsula of Mexico is the leading suspect for the extinction of the dinosaurs. This article reports on a Planetary Society expedition to Albion Island in the Rio Hondo region of Belize to investigate evidence supporting the impact theory.
    Keywords: GEOPHYSICS
    Type: Planetary Report (ISSN 0736-3680); 15; 4; p. 10-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: A large set of bow shock crossings (i.e., 1392) observed by 17 spacecraft has been used to explore the three-dimensional shape and location of the Earth's bow shock and its dependence on solar wind and interplanetary magnetic field (IMF) conditions. This study investigates deviations from gas dynamic flow models associated with the magnetic terms in the magnetohydrodynamic (MHD) equations. Empirical models predicting the statistical position and shape of the bow shock for arbitrary values of the solar wind pressure, IMF, and Alfvenic Mach number (M(sub A)) have been derived. The resulting data set has been used to fit three-dimensional bow shock surfaces and to explore the variations in these surfaces with sonic (M(sub S)), Alfvenic (M(sub A)) and magnetosonic (M(sub MS)) Mach numbers. Analysis reveals that among the three Mach numbers, M(sub A) provides the best ordering of the least square bow shock curves. The subsolar shock is observed to move Earthward while the flanks flare outward in response to decreasing M(sub A); the net change represents a 6-10% effect. Variations due to changes in the IMF orientation were investigated by rotating the crossings into geocentric interplanetary medium coordinates. Past studies have suggested that the north-south extent of the bow shock surface exceeds the east-west dimension due to asymmetries in the fast mode Mach cone. This study confirms such a north-south versus east-west asymmetry and quantifies its variation with M(sub S), M(sub A), M(sub MS), and IMF orientation. A 2-7% effect is measured, with the asymmetry being more pronounced at low Mach numbers. Combining the bow shock models with the magnetopause model of Roelof and Sibeck (1993), variations in the magnetosheath thickness at different local times are explored. The ratio of the bow shock size to the magnetopause size at the subpolar point is found to be 1.46; at dawn and dusk, the ratios are found to be 1.89 and 1.93, respectively. The subsolar magnetosheath thickness is used to derive the polytropic index gamma according to the empirical relation of Spreiter et al. (1966). The resulting gamma = 2.3 suggests the empirical formula is inadequate to describe the MHD interaction between the solar wind and the magnetosphere.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A5; p. 7907-7916
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: We have developed the numerical algorithm for the computation of transient viscoelastic responses in the time domain for a radially stratified Earth model. Stratifications in both the elastic parameters and the viscosity profile have been considered. The particular viscosity profile employed has a viscosity maximum with a constrast of O(100) in the mid lower mantle. The distribution of relaxation times reveals the presence of a continuous spectrum situated between O(100) and O(exp 4) years. The principal mode is embedded within this continuous spectrum. From this initial-value approach we have found that for the low degree harmonics the non-modal contributions are comparable to the modal contributions. For this viscosity model the differences between the time-domain and normal-mode results are found to decrease strongly with increasing angular order. These calculations also show that a time-dependent effective relaxation time can be defined, which can be bounded by the relaxation times of the principal modes.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1285-1288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: We have studied 2-D time-dependent convection for a rheology which is both non-Newtonian and temperature-dependent. Strong effects associated with viscous heating are found in the downwelling sheets, which are heated on both sides with an intensity around O(100) times the chondritic value. The magnitude of viscous heating increases strongly with the subduction speed. The slab interior is weakened by viscous heating and slab breakoff then takes place. This process provides a self-regulating mechanism for governing the speed of intact slabs able to reach the deep mantle. Timescales associated with viscous heating are quite short, a few million years. Internal heating by radioactivity decreases the amount of shear heating.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1277-1280
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: Many problems in geophysical and astrophysical convection systems are characterized by fast rotation and spherical shell geometry. The combined effects of Coriolis forces and spherical shell geometry produce a unique spatial symmetry for the convection pattern in a rapidly rotating spherical shell. In this paper, we first discuss the general spatial symmetries for rotating spherical shell convection. A special model, a spherical shell heated from below, is then used to illustrate how and when the spatial symmetries are broken. Symmetry breaking occurs via a sequence of spatial transitions from the primary conducting state to the complex multiple-layered columnar structure. It is argued that, because of the dominant effects of rotation, the sequence of spatial transitions identified from this particular model is likely to be generally valid. Applications of the spatial symmetry breaking to planetary convection problems are also discussed.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1265-1268
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: Initial observations of a newly documented type of optical emission above thunderstorms are reported. 'Blue jets', or narrowly collimated beams of blue light that appear to propagate upwards from the tops of thunderstorms, were recorded on B/W and color video cameras for the first time during the Sprites94 aircraft campaign, June-July, 1994. The jets appear to propagate upward at speeds of about 100 km/s and reach terminal altitudes of 40-50 m. Fifty six examples were recorded during a 22 minute interval during a storm over Arkansas. We examine some possible mechanisms, but have no satisfactory theory of this phenomenon.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1209-1212
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: It is shown from flux transfer event (FTE) occurrence statistics, observed as a function of MLT by the ISEE satellites, that recent 2-dimensional analytic theories of the effects of pulsed Petschek reconnection predict FTEs to contribute between 50 and 200 kV to the total reconnection voltage when the magnetosheath field points southward. The upper limit (200 kV) allows the possibility that FTEs provide all the antisunward transport of open field lines into the tail lobe. This range is compared with the voltages associated with series of FTEs signatures, as inferred from ground-based observations, which are in the range 10-60 kV. We conclude that the contribution could sometimes be made by a series of single, large events; however, the voltage is often likely to be contributed by several FTEs at different MLT.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1185-1188
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: We have investigated the middle atmospheric response to the 27-day and 11-yr solar UV flux variations at low to middle latitudes using a two-dimensional photochemical model. The model reproduced most features of the observed 27-day sensitivity and phase lag of the profile ozone response in the upper stratosphere and lower mesosphere, with a maximum sensitivity of +0.51% per 1% change in 205 nm flux. The model also reproduced the observed transition to a negative phase lag above 2 mb, reflecting the increasing importance with height of the solar modulated HO(x) chemistry on the ozone response above 45 km. The model revealed the general anti-correlation of ozone and solar UV at 65-75 km, and simulated strong UV responses of water vapor and HO(x) species in the mesosphere. Consistent with previous 1D model studies, the observed upper mesospheric positive ozone response averaged over +/- 40 was simulated only when the model water vapor concentrations above 75 km were significantly reduced relative to current observations. In agreement with observations, the model computed a low to middle latitude total ozone phase lag of +3 days and a sensitivity of +0.077% per 1% change in 205 nm flux for the 27-day solar variation, and a total ozone sensitivity of +0.27% for the 11-yr solar cycle. This factor of 3 sensitivity difference is indicative of the photochemical time constant for ozone in the lower stratosphere which is comparable to the 27-day solar rotation period but is much shorter than the 11-yr solar cycle.
    Keywords: GEOPHYSICS
    Type: Journal of Atmospheric and Terrestrial Physics (ISSN 0021-9169); 57; 4; p. 333-365
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for-current sheet structure is common in a certain prenoon localtime sector during strongly negative IMF B(sub Y).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A1; p. 137-153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: The stability of collisionless tearing modes is examined in the presence of curvature drift resonances and the trapped particle effects. A kinetic description for both electrons and ions is employed to investigate the stability of a two-dimensional equilibrium model. The main features of the study are to treat the ion dynamics properly by incorporating effects associated with particle trajectories in the tail fields and to include the linear coupling of trapped particle modes. Generalized dispersion relations are derived in several parameter regimes by considering two important sublayers of the reconnecting region. For a typical choice of parameters appropriate to the current sheet region, we demonstrate that localized tearing modes driven by ion curvature drift resonance effects are excited in the current sheet region with growth time of the order of a few seconds. Also, we examine nonlocal characteristics of tearing modes driven by curvature effects and show that modes growing in a fraction of a second arise when mode widths are larger than the current sheet width. Further, we show that trapped particle effects, in an interesting frequency regime, significantly enhance the growth rate of the tearing mode. The relevance of this theory for substorm onset phase and other features of the substorms is briefly discussed.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A3; p. 3563-3572
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: Using Global Positioning System (GPS) receivers, we reoccupied several leveling benchmarks on the Kenai Peninsula of Alaska which had been surveyed by conventional leveling immediately following the March 27, 1964, Prince William Sound earthquake (M(sub w) = 9.3). By combining the two sets of measurements with a new, high-resolution model of the geoid in the region, we were able to determine the cumulative 1993-1964 postseismic vertical displacement. We find uplift at all of our benchmarks, relative to Seward, Alaska, a point that is stable according to tide gauge data. The maximum uplift of about 1 m occurs near the middle of the peninsula. The region of maximum uplift appears to be shifted northwest relative to the point of maximum coseismic subsidence. If we use tide gauge data at Nikishka and Seward to constrain the vertical motion, then the observed uplift has a trenchward tilt (down to the southeast) as well as an arching component. To explain the observations, we use creep-at-depth models. Most acceptable models require a fault slip of about 2.75 m, although this result is not unique. If the slip has been continuous since the 1964 earthquake, then the average slip rate is nearly 100 mm/yr, twice the plate convergence rate. Comparing the net uplift achieved in 29 years with that observed over 11 years in an adjacent region southeast of Anchorage, Alaska, we conclude that the rate of uplift is decreasing. A further decrease in the uplift rate is expected as the 29-year averaged displacement rate is about twice the plate convergence rate and therefore cannot be sustained over the entire earthquake cycle.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; B2; p. 2031-2038
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: A permanent Global Positioning System (GPS) receiver at Casa Diablo Hot Springs, Long Valley Caldera, California was installed in January, 1993, and has operated almost continuously since then. The data have been transmitted daily to the Jet Propulsion Laboratory (JPL) for routine analysis with data from the Fiducial Laboratories for an International Natural sciences Network (FLINN) by the JPL FLINN analysis center. Results from these analyses have been used to interpret the on going deformation at Long Valley, with data excluded from periods when the antenna was covered under 2.5 meters of snow and from some periods when Anti Spoofing was enforced on the GPS signal. The remaining time series suggests that uplift of the resurgent dome of Long Valley Caldera during 1993 has been 2.5 +/- 1.1 cm/yr and horizontal motion has been 3.0 +/- 0.7 cm/yr at S53W in a no-net-rotation global reference frame, or 1.5 +/- 0.7 cm/yr at S14W relative to the Sierra Nevada block. These rates are consistent with uplift predicted from frequent horizontal strain measurements. Spectral analysis of the observations suggests that tidal forcing of the magma chamber is not a source of the variability in the 3 dimensional station location. These results suggest that remotely operated, continuously recording GPS receivers could prove to be a reliable tool for volcanic monitoring throughout the world.
    Keywords: GEOPHYSICS
    Type: Geopysical Research Letters (ISSN 0094-8276); 22; 3; p. 195-198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1137-1147
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Electromagnetic wave generation and resulting cross-field diffusion of plasma are considered at a tangential discontinuity, which characterizes the magnetopause for northward interplanetary magnetic field. Two-dimensional hybrid (particle ions, massless fluid electrons) simulations, in which the tangential discontinuity is generated self-consistently via a stream-stream interaction, are used to show that wave growth occurs when the ambient magnetic field is predominantly perpendicular to the direction of the density gradient. Low-frequency (much less than ion gyrofrequency) waves, with amplitudes delta B/B less than or equal to 0.2 and anticorrelated density fluctuations delta n/n less than or equal to 0.6, are generated at the discontinuity, resulting in cross-field diffusion that is comparable to the Bohm rate. Both the fluctuation level and the lack of ion heating in the calculations are consistent with observations at the magnetopause. The magnitude of the diffusion is considered in the presence of numerical effects and in the context of the inferred diffusion rate at the magnetopause. The relation of the low-frequency waves and their consequences to faster growing, short-wavelength waves due to the lower hybrid drift instability is also addressed. The overall conclusion of this initial study is that diffusion due to low frequency waves is not likely to be a major effect at the magnetopause.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 11,923-11,933
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: Particles leving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E x B drift. This effect which we refer to as 'centrifugal trapping' appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E x B drift speed) plasma sheet populations to the midplane vicinity.
    Keywords: GEOPHYSICS
    Type: Annales Geophysicae (ISSN 0992-7689); 13; 3; p. 242-246
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: The high-speed correction factor to the O(+)-O collision frequency, resulting from drift velocities between ions and neutrals, is calculated by solving the integral expression in this factor both numerically and analytically. Although the analytic solution is valid for either small or large drift velocities between ions and neutrals, for temperatures of interest and all drift velocities considered, agreement is found between analytic and detailed numerical integration results within less than 1% error. Let T(sub r) designate the average of the ion and neutral temperatures in K, and u = nu(sub d)/alpha, where nu(sub d) is the relative drift velocity in cm/s, and alpha = 4.56 x 10(exp 3) square root of T(sub r) cm/s is the thermal velocity of the O(+)-O system. Then, as u ranges from 0 to 2, the correction factor multiplying the collision frequency increases monotonically from 1 to about 1.5. An interesting result emerging from this calculation is that the correction factor for temperatures of aeronomical interest is to a good approximation independent of the temperature, depending only on the scaled velocity u.
    Keywords: GEOPHYSICS
    Type: Annales Geophysicae (ISSN 0992-7689); 13; 3; p. 253-255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-24
    Description: Previous studies indicated that damping rates of upstream whistlers strongly depend on the details of the electron distribution function. Moreover, detailed analysis of Doppler-shift and whistler dispersion relation indicated that upstream whistlers propagate obliquely in a broad band. In this paper we present results of a kinetic calculation of damping lengths of wide-band whistlers using the sum of 7-drifting bi-Maxwellian electron distributions as a best fit to the International Sun Earth Explorer (ISEE) 1 electron data. For 2 cases, when upstream whistlers are observed, convective damping lengths derived from ISEE magnetic field and ephemeris data are compared with theoretical results. We find that the calculated convective damping lengths are consistent with the data and that upstream whistlers remain marginally stable. We also show that the slope of plasma frame spectra of upstream whistlers, obtained by direct fitting of the observed spectra is between 5 and 7 with a sharp lower frequency cutoff corresponding to a wavelength of about one ion inertial length. When the solar wind velocity is directed largely along the wave normal of the upstream whistlers the polariztion of the right hand waves becomes reversed and low frequencies are switched to high resulting in a peaked spectrum with a strong high frequency cutoff. The overall spectral, wave and particle characteristics, proximity to the shock as well as propagation and damping properties indicate that these waves cannot be generated locally. Instead the observed upstream whistlers arise in the shock ramp most likely by a variety of cross-field drift and/or anisotropy driven instabilities.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 8-9; p. 85-92
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: We examined 11 cases when the interplanetary magnetic field (IMF) was intensely northward (greater than 10 nT) for long durations of time (greater than 3 hours), to quantitatively determine an uppler limit on the efficiency of solar wind energy injection into the magnetosphere. We have specifically selected these large B(sub N) events to minimize the effects of magnetic reconnection. Many of these cases occurred during intervals of high-speed streams associated with coronal mass ejections when viscous interaction effects might be at a maximum. It is found that the typical efficiency of solar wind energy injection into the magnetosphere is 1.0 x 10(exp -3) to 4.0 x 10(exp -3), 100 to 30 times less efficient than during periods of intense southward IMFs. Other energy sinks not included in these numbers are discussed. Estimates of their magnitudes are provided.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 6; p. 663-666
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: The accuracy of Geosat satellite altimetry over the Greenland ice sheet is evaluated by comparing the measured heights to radar elevations from the airborne Greenland Aerogeophysics Project. At the center of the ice sheet where the ice surface is nearly level, surface comparisons show a fit at the 1 to 3 m level as expected, but even at moderately sloping ice regions (0.3 deg-0.6 deg), satellite altimetry mean errors in the range of 10 to 35 m are observed. These errors are found for slope-corrected and waveform-retracked data, so most previous accuracy estimates of current satellite altimetry ice sheet elevations in regions of slopping or undulating ice appear to be too optimistic.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; C2; p. 2687-2696
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: Magnetic reconnection between the interplanetary magnetic field (IMF) and the geomagnetic field is thought to play a major role in the transfer of solar wind momentum and energy to the magnetosphere. As the angle between the IMF and the geomagnetic field is changed at the bow of the magnetosphere, the topological record of the location of the reconnection region should be recorded in the magnetosheath and on the magnetopause along the flanks of the tail, because the super fast flow freezes strong magnetic gradients formed in the bow reconnection regions into the plasma downstream. In this report, we present results from a three-dimensional, magnetohydrodynamic (MHD), global numerical simulation code for the location of the separatrix between unconnected IMF magnetosheath field lines and reconnected field lines which penetrate the magnetopause and connect to the polar ionosphere. The angle between the IMF direction and the line where the separatrix crosses the magnetopause is shown to be a sensitive function of the IMF clock angle. We also explain how this behavior can be used to derive an approximate relation for the dependence of the cross-polar voltage on the IMF clock angle. We conclude with a note of caution concerning the importance of physical boundary conditions in magnetoplasma simulations.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A3; p. 3613-3621
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: Narrow enhancements of electron precipitation, with energy and flux well above typical values, have been observed with Dynamics Explorer 2 (DE 2) in the cusp/cleft region. The electron flux in the energy range 0.2-1 keV was 2 orders of magnitude higher in these structures than in the magnetosheath and were seen in approximaetly 80% of DE 2 cusp crossings at ionospheric altitudes. Typically, there was more than one electron structure in each cusp crossing. The position of these structures showed a systematic variation: for poleward ion dispersion (energy decreases with increasing latitude), electron structures were seen more often on the equatorial boundary of the cusp, while for equatorward ion dispersion (energy decreases with decreasing latitude), electron structures were more often seen on the poleward boundary. This suggests that the electron structures are associated with newly reconnected field lines. The electron spectra suggest that field-aligned acceleration processes could produce the electron structures, first near the boundary of the cusp/cleft during the reconnection of field lines and then in the cusp/cleft during the motion of reconnected flux tubes through the polar ionosphere.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A2; p. 1597-1610
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-24
    Description: We have made a statistical study of the spatial distribution of low frequency waves (approx. 0.01-0.1 Hz) in the region upstream of the pre-dawn to dawn side bow shock (-50 Re less than X less than 15 Re) using both GEOTAIL and international sun earth explorer 3 (ISEE-3) magnetometer data. We have found that the wave amplitude dependence on D and X(sub s), where D is the distance from the bow shock and X(sub s) the x-coordinate position of shock foot point of the IMF, can be described by a functional form of A exp (X(sub s)/L(sub X)-D/L(sub D), with the characteristic attenuation distances, L(sub X) = 62 +/- 12 Re and L(sub D) = 59 +/- 38 Re.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 2; p. 81-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: Enhancements in the fluxes of relativistic electrons trapped within the Earth's magnetosphere have been measured by the high-energy particle spectrometer, part of the particle environment monitor on the upper atmosphere research satellite (UARS). The largest increase in the electron fluxes with energies greater than 1 MeV observed on UARS from October 1991 through July 1994 was in early May 1992. The fluxes of trapped electrons in the drift loss cone and locally precipitating electrons showed differing buildup and decay rates as a function of invariant latitude. Increases of more than 2 orders of magnitude were observed in drift loss cone fluxes at magnetic latitudes of 40 deg-66 deg and in precipitating fluxes from 48 deg to 66 deg. The energy flux contained in the most intense local precipitation observed was approximately 0.1 erg/sq cm/s, entering the atmosphere and creating up to 1000 ion pairs/cu cm/s at 55-km altitude. The daily averaged energy flux from directly precipitating electrons with energies greater than 1 MeV deposited greater than 10(exp 20) erg/d worldwide into the atmosphere for the period May 12-21, 1992, producing greater than 10(exp 31) odd nitrogen molecules below 60-km altitude.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1027-1033
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    facet.materialart.
    In:  Other Sources
    Publication Date: 2013-08-29
    Description: We have carried out three (piggyback) radon-related projects aboard the KAO. The first, which was limited to upper tropospheric measurements while in level flight, revealed the systematic occurrence of unexpectedly high radon concentrations in this region of the atmosphere. The second project was an instrument development project, which led to the installation of an automatic radon measurement system aboard the NASA ER-2 High Altitude Research Aircraft. In the third, we installed a new system capable of collecting samples during the normal climb and descent of the KAO. The results obtained in these projects have resulted in significant contributions to our knowledge of atmospheric transport processes, and are currently playing a key role in the validation of global circulation and transport models.
    Keywords: GEOPHYSICS
    Type: Astronomical Society of the Pacific, Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, Volume 73; p 353-356
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: A spaceborne solar UV irradiance observation from NOAA-14 polar orbiting satellite by using an 1/4 meter double-ebert spectrometer, is reported.
    Keywords: GEOPHYSICS
    Type: NASA-CR-200304 , NAS 1.26:200304 , NIPS-96-08171
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.
    Keywords: GEOPHYSICS
    Type: NASA-CR-200094 , NAS 1.26:200094 , NIPS-96-07663
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: One year of near-continuous water vapor radiometer (WVR) measurements at DSS 13 has provided a database for characterizing the Goldstone tropospheric delay properties in a statistical sense. The results have been expressed in terms of the Allan standard deviation of delay and compared to a previous model for Goldstone fluctuations and the specifications of the Cassini Gravitational Wave Experiment (GWE). The new WVR data indicate that average fluctuation levels at hour time scales or less are approximately 30 percent lower than the earlier Goldstone model predictions. At greater than 1 h time scales, the WVR indicated fluctuation levels are in closer agreement with the model, although noise floor limitations may be artificially raising the average WVR-derived atmospheric fluctuation levels at the longer time scales. When scaled to two-way Doppler tracking at 20 deg elevation, as will occur for the GWE, these results indicate that Goldstone winter tropospheric delay fluctuations will typically be a factor of 10 larger than the GWE requirements at 1000 s and a factor of 4 larger at 10,000 s.
    Keywords: GEOPHYSICS
    Type: The Telecommunications and Data Acquisition Report; p 1-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-28
    Description: This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.
    Keywords: GEOPHYSICS
    Type: NASA-CR-199271 , NAS 1.26:199271
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-06-28
    Description: Mesoscale model simulations provide insight into the complex jet streak adjustments on 11-12 July 1981 that preceded the first of two significant gravity wave events to have been generated over the Rocky Mountains in Montana. Simulations employing a variety of terrain treatments indicate that prior to wave formation, geostrophic adjustment processes modified the structure of the mid-upper tropospheric jet streak by creating secondary jetlets to the southeast of the polar jet streak in proximity to the gravity wave generation region. This simulated restructuring of the mid-upper tropospheric jet streak is the result of a four stage process. During stage 1, the wind adjusts to the mass field as the jet streak exit region propagates into the inflection point between the upstream trough and downstream ridge in the height field. Stage 2 is initiated as the mass field is forced to adjust to the new ageostrophic wind field created during stage 1. Stage 3 is defined by a second geostrophic adjustment process occurring in a similar manner but to the south and east of the adjustment which occurs during stage 1. A low-level mesoscale jetlet is formed during stage 4 in response to the low-level pressure falls that are established during stage 3. The perturbation of this jetlet, caused by orographically-induced adiabatic and diabatic physical processes, is the likely mechanism responsible for the generation of the first and second episode of observed gravity waves. The dynamics responsible for this wave episode are discussed as differential surface sensible heating inducing an orographically-forced mountain-plains solenoid, resulting in the formation of additional mesoscale jetlets and internal gravity waves. Also discussed is how convective latent heating modifies the numerically simulated terrain-induced internal gravity waves, especially their amplitude and phase velocities, which provide better agreement with those wave characteristics observed in nature. Finally, the three-dimensional linear response of a zonally uniform barotropic flow in a vertically unbounded, continuously stratified, Boussinesq atmosphere which is perturbed from geostrophic equilibrium is investigated.
    Keywords: GEOPHYSICS
    Type: NASA-CR-197804 , NAS 1.26:197804
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-28
    Description: In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.
    Keywords: GEOPHYSICS
    Type: NASA-TM-104617 , NAS 1.15:104617
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: The retarding ion mass spectrometer (RIMS) experiment onboard the Dynamics Explorer 1 (DE 1) satellite was designed to perform energy and mass-per-charge analysis on low-energy ions (less than 50 eV) with mass/charge ratios ranging from 1 to 40 amu/Z. The DE 1 satellite, carrying the RIMS experiment, was launched into an elliptical polar orbit on August 3, 1981. The approximately 7.5 hour orbit has perigee of 675 km altitude and apogee of 24,875 km altitude. this document and those that following in this series, contains summary RIMS data spectrograms for each orbit for which RIMS data are available. The RIMS instrument began returning science data on day 280 of 1981 and continued to return usable data until the end of the DE mission in March 1991. It should be noted that studies of the RIMS data set should be conducted only with a thorough awareness of the material described in the introduction section presented here, or in collaboration with a scientist familiar with RIMS data analysis.
    Keywords: GEOPHYSICS
    Type: NASA-TM-108485 , NAS 1.15:108485
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    facet.materialart.
    In:  CASI
    Publication Date: 2019-06-28
    Description: Consensus on the timing and mapping of substorm features has permitted a synthesis of substorm models. Within the synthesis model the mechanism for onset of substorm expansion is still unknown. Possible mechanisms are: growth of an ion tearing mode, current disruption by a cross-field current instability, and magnetosphere-ionosphere coupling. While the synthesis model is consistent with overall substorm morphology, including near-Earth onset, none of the onset theories, taken individually, appear to account for substorm expansion onset. A grand synthesis with unification of the underlying onset theories appears necessary.
    Keywords: GEOPHYSICS
    Type: NASA-CR-197672 , NAS 1.26:197672 , F19628-90-K-0003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: A description of the electric structure as observed during a rocket sounding noctilucent cloud (NLC) observation program in the summer of 1991, is presented. Both NLC and polar mesosphere summer echo (PMSE) conditions were determined. The observable effects on ions and electrons were measured in the NLC and PMSE regions and associated electric field (E-fields) measurements indicated small alternating current vertical fields. The following findings are reported: small and large scale electron density structure is noticeable in the NLC regions; above 82 km, the occurrence of very low-mobility positive ions directly demonstrates the existence of charged aerosols, and small alternating current vertical electric fields were observed in the NLC and PMSE region.
    Keywords: GEOPHYSICS
    Type: NASA-TM-111280 , NAS 1.15:111280 , ESA, Proceedings of 12th ESA Symposium on European Rocket and Balloon Programmes and Related Research; p 95-100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: The mesospheric and lower thermospheric equatorial dynamics program (MALTED), conducted from the Alcantara, Brazil rocket site as part of the international Guara rocket campaign to study equatorial dynamics, irregularities, and instabilities, is reported. The MALTED program was concerned with the 16-day modulation of the diurnal tidal amplitude, which shows high extremes during August in the equatorial belt. The interaction of this global phenomenon with locally produced gravity waves and turbulence in the mesopause region is studied in order to gain a better understanding of the dynamic influences on the equatorial middle atmosphere. Four identical payloads designed to investigate small-scale turbulence and irregularities, were coordinated with 20 falling sphere rockets designed to measure meteorological parameters. The prediction and monitoring of global mesospheric effects were obtained through coordination with various ground-based radar observatories. The campaign logistics, the instrumentation, and the preliminary results are described.
    Keywords: GEOPHYSICS
    Type: NASA-TM-111281 , NAS 1.15:111281 , ESA, Proceedings of 12th ESA Symposium on European Rocket and Balloon Programmes and Related Research; p 113-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-06-28
    Description: The goals of this project are to observe how the open water/thin ice fraction in a high-concentration ice pack responds to different short-period atmospheric forcings, and how this response is represented in different scales of observation. The objectives can be summarized as follows: determine the feasibility and accuracy of ice concentration and ice typing by ERS-1 SAR backscatter data, and whether SAR data might be used to calibrate concentration estimates from optical and massive-microwave sensors; investigate methods to integrate SAR data with other satellite data for turbulent heat flux parameterization at the ocean/atmosphere interface; determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open-water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space.
    Keywords: GEOPHYSICS
    Type: NASA-CR-200179 , NAS 1.26:200179 , NIPS-96-08477
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of unprecedented precision and coverage in the plasmasphere, inner magnetosphere and magnetopause, from which the structure, inter-relationship, and variations of different plasma regions can be determined (Armstrong Johnson, 1995). A space-borne Radio Plasma Imager (RPI) could provide a unique global view of the magnetosphere revealing the underlying structure of remote plasma regions, thereby providing a framework for the interpretation of images obtained by other techniques as identified in the technical areas TA1 to TA4 in the MSFC NRA8-8.
    Keywords: GEOPHYSICS
    Type: NASA-CR-200009 , NAS 1.26:200009 , NIPS-96-07147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: Simultaneous very long baseline interferometry (VLBI) and water vapor radiometer (WVR) measurements on a 21 km baseline showed that calibration by WVRs removed a significant fraction of the effect of tropospheric delay fluctuations for these experiments. From comparison of the residual delay variations within scans and between scans, the total tropospheric contribution t the delay residuals for each of the three 5 to 20 hour sessions was estimated as 1, 17, and 10%, with the first value being uncertain. The observed improvement in rms residual delay from WVR calibration during these three sessions was 4, 16, and 2%, respectively. The improvement is consistent with the estimated 2 to 3 mm path delay precision of current WVRs. The VLBI measurements, of natural radio sources, were conducted in April and May 1993 at Goldstone, California. Dual-frequency (2.3 and 8.4 GHz) observations were employed to remove the effects of charged particles from the data. Measurements with co-pointed WVRs, located within 50 m of the axis of each antenna, were performed to test the ability of the WVRs to calibrate line-of-sight path delays. Factors that made WVR performance assessment difficult included (1) the fact that the level of tropospheric fluctuations was smaller than is typical for Goldstone during these experiments and (2) VLBI delay variations on longer time scales (i.e., over multiple scans) contained uncalibrated instrumental effects (probably a result of slow temperature variations in the VLBI hardware) that were larger than the tropospheric effects.
    Keywords: GEOPHYSICS
    Type: The Telecommunications and Data Acquisition Report; p 12-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    facet.materialart.
    In:  CASI
    Publication Date: 2019-06-28
    Description: The main results of the grant were (1) finishing the manuscript of a proof of completeness of the Poincare modes in an incompressible nonviscous fluid corotating with a rigid ellipsoidal boundary, (2) partial completion of a manuscript describing a definition of helicity that resolved questions in the literature about calculating the helicities of vector fields with complicated topologies, and (3) the beginning of a reexamination of the inverse problem of inferring properties of the geomagnetic field B just outside the core-mantle boundary (CMB) from measurements of elements of B at and above the earth's surface. This last work has led to a simple general formalism for linear and nonlinear inverse problems that appears to include all the inversion schemes so far considered for the uniqueness problem in geomagnetic inversion. The technique suggests some new methods for error estimation that form part of this report.
    Keywords: GEOPHYSICS
    Type: NASA-CR-199296 , NAS 1.26:199296
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-28
    Description: For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in may different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data nd help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report documents the scientific rational for such a magnetospheric imaging mission and provides a mission concept for its implementation.
    Keywords: GEOPHYSICS
    Type: NASA-RP-1378 , NAS 1.61:1378 , M-794 , NIPS-95-06265
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-28
    Description: The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.
    Keywords: GEOPHYSICS
    Type: NASA-TM-4715 , NAS 1.15:4715 , M-790
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: The various regions of the magnetosphere-ionosphere system are coupled by flows of charged particle beams and electromagnetic waves. This coupling gives rise to processes that affect both technical and non-technical aspects of life on Earth. The CRRES Program sponsored experiments which were designed to produce controlled and known input to the space environment and the effects were measured with arrays of diagnostic instruments. Large amounts of material were used to modify and perturb the environment in a controlled manner, and response to this was studied. The CRRES and PEGSAT satellites were dual-mission spacecraft with a NASA mission to perform active chemical-release experiments, grouped into categories of tracer, modification, and simulation experiments. Two sounding rocket chemical release campaigns completed the study.
    Keywords: GEOPHYSICS
    Type: NASA-TM-108494 , NAS 1.15:108494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-06-28
    Description: We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (e.g., reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 1.2 without impulse-amplitude reduction). We use our simulation results also to map phase-space densities f in accordance with Liouville's theorem. We find that the stormtime transport of approximately greater than 145-keV ions produces little change in f-bar the drift-averaged phase-space density on any drift shell of interest. However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies approximately 30-145 keV, which are representative of the stormtime ring current.
    Keywords: GEOPHYSICS
    Type: NASA-CR-199540 , NAS 1.26:199540 , ATR-92(7251)-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-06-28
    Description: If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12-18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.
    Keywords: GEOPHYSICS
    Type: DE95-009580 , SAND-95-0571C , CONF-950153-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-06-28
    Description: The work of this grant has been predominantly focused on ion outflows from two data sets: Prognoz 7 and Dynamics Explorer. The Prognoz analysis studied ion densities, temperatures, and flow velocities in the magnetotail. The work performed under this contract consisted of developing a program to load the raw data, computing the background subtraction of a strong sun pulse, and using the net count to calculate the low order moments of the distribution function. The study confirms the results of ISEE with regard to the supply of plasma from the cusp as a major source of plasmasheet plasma and goes beyond this to discuss the use of ion velocities as a way to examine the motions of the magnetotail. The abstract of the work to be reported is included as an appendix. The work on the DE/Retarding Ion Mass Spectrometer is separated into two categories: (1) classification of low-energy ion flows from high-latitudes, and (2) studies of the polar wind. Major publications resulting from this work are also included as an appendix to this report. The polar wind is in a category by itself as a result of the thermal escape of hydrogen and helium because of ambipolar diffusion through the heavier, oxygen-dominated topside ionosphere. The analysis of the polar wind reports the flux variability as a function of season, magnetic activity, etc. Much effort has been expended under this grant to complete a follow on study of the thermal structure of the polar wind. Extensive display tools and analysis software have been developed and used in an attempt to carry out this thermal analysis. The present work uses a constrained fit scheme that combines the ion densities and flow velocities derived from Chandler et al. and a spacecraft potential derived from an empirical relation to the total ion density to determine the remaining fit parameter, the ion temperature, via a least squares fit to the RIMS data.
    Keywords: GEOPHYSICS
    Type: NASA-CR-197813 , NAS 1.26:197813
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-06-28
    Description: This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.
    Keywords: GEOPHYSICS
    Type: NASA-TM-104606-VOL-4 , REPT-95B00040-VOL-4 , NAS 1.15:104606-VOL-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-28
    Description: Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.
    Keywords: GEOPHYSICS
    Type: NASA-CR-197391 , NAS 1.26:197391
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-06-28
    Description: Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental measurement (for zeroth order MHD equilibrium) has been made infrequently and with poor spatial coverage - the global electric field. This oversight is due in part to the neglect of theorists. However, there is renewed interest in the convection electric field because it is now realized to be central to many magnetospheric processes, including the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere ionosphere coupling, ring current and radiation belt transport, substorm injections, and several acceleration mechanisms. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models) and we are left with an overly simplistic theoretical field, the Volland-Stern electric field model. Single point measurements of the plasmapause were used to infer the appropriate amplitudes of this model, parameterized by K(sub p). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 20 years. The analysis of current data sets requires a great deal more accuracy than can be provided by the Volland-Stern model. The variability of electric field shielding has not been properly addressed although effects of penetrating magnetospheric electric fields has been seen in mid-and low-latitude ionospheric data sets. The growing interest in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections. Thus we proposed and developed algorithms for extracting electric fields from particle data taken in the Earth's magnetosphere. As a test of the effectiveness of these new techniques, we analyzed data taken by the AMPTE/CCE spacecraft in equatorial orbit from 1984 to 1989.
    Keywords: GEOPHYSICS
    Type: NASA-CR-197392 , NAS 1.26:197392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-06-28
    Description: This report covers the time period 1 January 1994 to 31 December 1994. During this reporting period we had our fourth Upper Atmosphere Research Satellite (UARS) correlative balloon flight; the data from this flight have been reduced and submitted to the UARS CDHF. We have spent most of the past year analyzing data from this and past flights. For example, using data from our September 1989 balloon flight we have demonstrated for the first time ever that the rates of production and loss of ozone are in balance in the upper stratosphere. As part of this analysis, we have completed the most detailed study to date of radical partitioning throughout the stratosphere. We have also produced the first measurement of HBr and HOBr mixing ratio profiles over a full diurnal cycle.
    Keywords: GEOPHYSICS
    Type: NASA-CR-197368 , NAS 1.26:197368
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82