ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (83,671)
  • General Chemistry  (77,717)
  • Life and Medical Sciences  (30,791)
  • ASTROPHYSICS  (16,581)
  • Aerodynamics
Collection
Keywords
Language
Years
  • 101
    Publication Date: 2019-08-13
    Description: This talk will provide an overview of investments in the Entry Systems Modeling project, along with some context of where the effort sits in the overall Space Technology EDL Portfolio. Technical highlights, particularly with referent to work on Ablation Modeling, will be given. Future directions will be discussed.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN46281 , Ablation Workshop; Aug 30, 2017 - Aug 31, 2017; Bozeman, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-08-10
    Description: PADRI: A common platform for validation of aircraft drag reduction technologies; Generic strut-braced wing configuration; Slightly swept wing for low cruise Mach number (0.72); Simplified geometry without engines, empennage or flap-track fairings; Significant wave-drag and flow separation at strut-wing intersection; Focus of this workshop is to redesign the junction
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN49604 , Platform for Aircraft Drag Reduction Innovation (PADRI 2017); Nov 29, 2017 - Dec 01, 2017; Barcelona; Spain|European Community on Computational Methods in Applied Sciences (ECCOMAS) Advanced Course (EAC); Nov 29, 2017 - Dec 01, 2017; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2019-08-08
    Description: The FAST-MAC circulation control model was modified to test an array of unsteady sweeping-jet actuators at realistic flight Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center. Two types of sweeping jet actuators were fabricated using rapid prototype techniques, and directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60, and a transonic cruise configuration with a 0 flap deflection. For the 30 flap high-lift configuration, the sweeping jets achieved comparable lift performance in the separation control regime, while reducing the mass flow by 54% as compared to steady blowing. However, the sweeping jets were not effective for the 60 flap. For the transonic cruise configuration, the sweeping jets reduced the drag by 3.3% at an off design condition. The drag reduction for the design lift coefficient for the sweeping jets provided only half the drag reduction shown for the steady blowing case (6.5%), but accomplished this with a 74% reduction in mass flow.
    Keywords: Aerodynamics
    Type: NF1676L-27684
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-13
    Description: This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.
    Keywords: Aerodynamics
    Type: NF1676L-24456 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-07-13
    Description: The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.
    Keywords: Aerodynamics
    Type: NF1676L-24480 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019-07-13
    Description: This paper reports the findings from a study that applies wall-resolved large-eddy simulation to investigate flow separation over the NASA wall-mounted hump geometry. Despite its conceptually simple flow configuration, this benchmark problem has proven to be a challenging test case for various turbulence simulation methods that have attempted to predict flow separation arising from the adverse pressure gradient on the aft region of the hump. The momentum-thickness Reynolds number of the incoming boundary layer has a value that is near the upper limit achieved by recent direct numerical simulation and large-eddy simulation of incompressible turbulent boundary layers. The high Reynolds number of the problem necessitates a significant number of grid points for wall-resolved calculations. The present simulations show a significant improvement in the separation-bubble length prediction compared to Reynolds-Averaged Navier-Stokes calculations. The current simulations also provide good overall prediction of the skin-friction distribution, including the relaminarization observed over the front portion of the hump due to the strong favorable pressure gradient. We discuss a number of problems that were encountered during the course of this work and present possible solutions. A systematic study regarding the effect of domain span, subgrid-scale model, tunnel back pressure, upstream boundary layer conditions and grid refinement is performed. The predicted separation-bubble length is found to be sensitive to the span of the domain. Despite the large number of grid points used in the simulations, some differences between the predictions and experimental observations still exist (particularly for Reynolds stresses) in the case of the wide-span simulation, suggesting that additional grid resolution may be required.
    Keywords: Aerodynamics
    Type: NF1676L-24481 , AIAA SciTech Forum and Exposition 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-07-13
    Description: This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing (BSCW) configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results show the effects of the temporal and spatial resolution, the coupling scheme between the flow and the structural solvers, and the initial excitation conditions on the numerical flutter onset. Depending on the free stream condition and the angle of attack, the above parameters do affect the flutter onset. Two conditions are analyzed: Mach 0.74 with angle of attack 0 and Mach 0.85 with angle of attack 5. The results are presented in the form of the damping values computed from the wing pitch angle response as a function of the dynamic pressure or in the form of dynamic pressure as a function of the Mach number.
    Keywords: Aerodynamics
    Type: NF1676L-24500 , AIAA SciTech 2017; Jan 09, 2017 - Jan 17, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-07-13
    Description: A wind tunnel investigation of a 0.04-scale model of the Lockheed Martin Hybrid Wing Body (HWB) with Over Wing Nacelles (OWN) air mobility transport configuration was conducted in the National Transonic Facility at the NASA Langley Research Center under a collaborative partnership between NASA, the Air Force Research Laboratory, and Lockheed Martin Aeronautics Company. The wind tunnel test sought to validate the transonic aerodynamic performance of the HWB and to validate the efficiency benefits of the OWN installation as compared to the traditional under-wing installation. The semispan HWB model was tested in a clean wing configuration and also tested with two different nacelles representative of a modern turbofan engine and a future advanced high bypass ratio engine. The nacelles were installed in three different locations with two over-wing positions and one under-wing position. Five-component force and moment data, surface static pressure data, and aeroelastic deformation data were acquired. For the cruise configuration, the model was tested in an angle-of-attack range between -2 and 10 degrees at free-stream Mach numbers from 0.3 to 0.9 and at unit Reynolds numbers between 8 and 39 million per foot, achieving a maximum of 80% of flight Reynolds numbers across the Mach number range. The test results validated pretest computational fluid dynamic (CFD) simulations of the HWB performance including the OWN benefit and the results also exhibited excellent transonic drag data repeatability to within +/-1 drag count. This paper details the experimental setup and model overview, presents some sample data results, and describes the facility improvements that led to the success of the test.
    Keywords: Aerodynamics
    Type: NF1676L-24587 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-07-13
    Description: The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN35006 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-07-16
    Description: Seal whiskers have been found to produce unique wake flow structures that minimize self-induced vibration and reduce drag. The cause of these wake features are due to the peculiar three-dimensional morphology of the whisker surface. The whisker can be defined as an elliptical cross section with variation in the major and minor axis of the ellipse along the length of the whisker as well as rotation of the elliptical plane with respect to the whisker axis, angle of incidence. While the effects of several dominant parameters of the whisker morphology have been studied, the effect of the rotation of the elliptical plane has not been well understood. This paper will examine the influence of the angle of incidence on the wake flow structure through series of water channel studies. Several models of whisker-like geometries will be tested which isolate the rotation angle as the only variation between models. The wake structure behind each seal whisker model will be measured through particle image velocimetry (PIV). The different models wake structures will be compared identifying the effect of angle of incidence on the wake structure. Angle of incidence was found to influence the wake structure through reorganization of velocity patterns, reduction of recovery length and modification of magnitude of Tu. These results help provide a more complete understanding of the seal whisker geometry relationship to wake structure and can provide insight into design practices for application of whisker geometery to various engineering problems.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN52934 , AIAA Aerospace Sciences Meeting 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-07-13
    Description: BOS for flight test focusing on aircraft operations and piloting.
    Keywords: Aerodynamics
    Type: AFRC-E-DAA-TN43978 , SETP European Symposium; Jul 11, 2017 - Jul 14, 2017; Bristol; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-07-13
    Description: Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted.
    Keywords: Aerodynamics
    Type: NF1676L-27446 , 2017 AIAA Propulsion and Energy Forum and Exposition; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-07-13
    Description: This paper studies the whirl flutter stability of the NASA experimental electric propulsion aircraft designated the X-57 Maxwell. whirl flutter stability is studied at two flight conditions: sea level at 2700 RPM to represent take-off and landing and 8000 feet at 2250 RPM to represent cruise. Two multibody dynamics analyses are used: CAMRAD II and Dymore. The CAMRAD II model is a semi-span X-57 model with a modal representation for the wing/pylon system. The Dymore model is a semi-span wing with a propeller composed of beam elements for the wing/pylon system that airloads can be applied to. The two multibody dynamics analyses were verified by comparing structural properties between each other and the NASTRAN analysis. For whirl flutter, three design revisions of the wing and pylon mount system are studied. The predicted frequencies and damping ratio of the wing modes show good agreements between the two analyses. Dymore tended to predict a slightly lower damping ratio as velocity increased for all three dynamic modes presented. Whirl flutter for the semi-span model was not present up to 500 knots for the latest design, well above the operating range of the X-57.
    Keywords: Aerodynamics
    Type: NF1676L-25815 , AIAA Aviation 2017 Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-07-13
    Description: A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.
    Keywords: Aerodynamics
    Type: NF1676L-25692 , AIAA Aviation 2017 Forum; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-07-13
    Description: Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9%-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 ft x 10 ft Beech wind tunnel from Reynolds numbers of 0.810(exp 6) to 2.410(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, three-dimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future data analysis. This research also confirmed that artificial ice roughness created with rapid-prototype manufacturing methods can generate aerodynamic performance effects comparable to grit roughness of equivalent size when proper care is exercised in design and installation. The conclusions of this combined experimental and computational study contributed directly to the successful implementation of follow-on test campaigns with numerous artificial ice-shape configurations for this 8.9% scale model.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN42235 , AIAA Atmospheric and Space Environments Conference 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2019-07-13
    Description: The Orion Multi-purpose Crew Vehicle (MPCV) Orion spacecraft will return humans from beyond earth's orbit, including Mars and will be required to land 20,000 pounds of mass safely in the ocean. The parachute system nominally lands under 3 main parachutes, but the system is designed to be fault tolerant and land under 2 main parachutes. During several of the parachute development tests, it was observed that a pendulum, or swinging, motion could develop while the Crew Module (CM) was descending under two parachutes. This pendulum effect had not been previously predicted by modeling. Landing impact analysis showed that the landing loads would double in some places across the spacecraft. The CM structural design limits would be exceeded upon landing if this pendulum motion were to occur. The Orion descent and landing team was faced with potentially millions of dollars in structural modifications and a severe mass increase. A multidisciplinary team was formed to determine root cause, model the pendulum motion, study alternate canopy planforms and assess alternate operational vehicle controls & operations providing mitigation options resulting in a reliability level deemed safe for human spaceflight. The problem and solution is a balance of risk to a known solution versus a chance to improve the landing performance for the next human-rated spacecraft.
    Keywords: Aerodynamics
    Type: JSC-CN-39169 , Aerodynamic Decelerator Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-07-13
    Description: The Hyperloop concept is proposed as a faster, cheaper alternative to high-speed rail and traditional short-haul aircraft. It consists of a passenger pod traveling through a tube under light vacuum while being propelled and levitated by a combination of permanent and electro-magnets. The concept addresses NASA's research thrusts for growth in demand, sustainability, and technology convergence for high-speed transport. Hyperloop is a radical departure from other advanced aviation concepts, however it remains an aeronautics concept that tackles the same strategic goals of low-carbon propulsion and ultra-effcient vehicles. System feasibility was investigated by building a multidisciplinary vehicle sizing model that takes into account aerodynamic, thermodynamic, structures, electromagnetic, weight, and mission analyses. The sizing process emphasized the strong coupling between the two largest systems: the tube and the passenger pod. The model was then exercised to examine Hyperloop from a technical and cost perspective. The structural sizing analysis of the travel tube demonstrates potential for signi cant capital cost reductions by considering an underwater route. Examination of varying passenger capacity indicates that the system can be operated with a wide range of passenger loads without significant change in operating expenses. Lastly, a high-level sizing study simulated variations in tube area, pressure, pod speed, and passenger capacity showing that there is a tube pressure that minimizes operating energy usage. The value of this optimal tube pressure is highly sensitive to numerous design details. These combined estimates of energy consumption, passenger throughput, and mission analyses all support Hyperloop as a faster and cheaper alternative to short-haul flights. The tools and expertise used to quantify these results also demonstrate how traditional aerospace design methods can be leveraged to handle the complex and coupled design process. Much of the technology development required for the Hyperloop is shared with next-generation aircraft. Furthermore, the substantial public interest and active commercial development make it an ideal candidate as an aircraft technology driver and test bed.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN37945 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-07-13
    Description: Discrepancies between the model and balance coordinate systems lead to biases in the aerodynamic measurements during wind-tunnel testing. The reference coordinate system relative to the calibration coordinate system at which the forces and moments are resolved is crucial to the overall accuracy of force measurements. This paper discusses sources of discrepancies and estimates of coordinate system rotation and translation due to machining and assembly differences. A methodology for numerically estimating the coordinate system biases will be discussed and developed. Two case studies are presented using this methodology to estimate the model alignment. Examples span from angle measurement system shifts on the calibration system to discrepancies in actual wind-tunnel data. The results from these case-studies will help aerodynamic researchers and force balance engineers to better the understand and identify potential differences in calibration systems due to coordinate system rotation and translation.
    Keywords: Aerodynamics
    Type: NF1676L-25870 , AIAA Aviation Technology, Integration, and Operations Conference (AVIATION 2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-13
    Description: A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.
    Keywords: Aerodynamics
    Type: NF1676L-25806 , AIAA Aviation 2017 Forum; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-13
    Description: There is a drive to devise acoustic treatments with reduced skin-friction and therefore fuel-burn penalty for engine nacelles on commercial airplanes. The studies have been experimental, and the effects on skin-friction are deduced from measurements of the pressure drop along a duct. We conduct a detailed CFD analysis of the installation, for two purposes. The first is to predict the effects of the finite size of the rig, including its near-square cross-section and the moderate length of the treated patch; this introduces transient and blockage effects, which have not been included so far in the analysis. In addition, the flow is compressible, so that even with homogeneous surface conditions, it is not homogeneous in the streamwise direction. The second purpose is to extract an effective sand-grain roughness size for a particular liner, which in turn can be used in a CFD analysis of the aircraft, leading to actual predictions of the effect of acoustic treatments on fuel burn in service. The study is entirely based on classical turbulence models, with an appropriate modification for effective roughness effects, rather than directly modeling the liners.
    Keywords: Aerodynamics
    Type: NF1676L-25719 , AIAA Aviation 2017 Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-07-13
    Description: This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.
    Keywords: Aerodynamics
    Type: NF1676L-25663 , AIAA Aviation Technology, Integration, and Operations Conference (AVIATION 2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-13
    Description: Direct numerical simulations (DNS) of flow over an NACA-0012 airfoil are performed at a low and a moderate Reynolds numbers of Re(sub c)=50 times10(exp 3) and 1times 10(exp 6). The angles of attack are 5 and 15 degrees at the low and the moderate Reynolds number cases respectively. The three-dimensional unsteady compressible Navier-Stokes equations are solved using higher order compact schemes. The flow field in the low Reynolds number case consists of a long separation bubble near the leading-edge region and an attached boundary layer on the aft part of the airfoil. The shear layer that formed in the separated region persisted up to the end of the airfoil. The roles of the turbulent diffusion, advection, and dissipation terms in the turbulent kinetic-energy balance equation change as the boundary layer evolves over the airfoil. In the higher Reynolds number case, the leading-edge separation bubble is very small in length and in height. A fully developed turbulent boundary layer is observed in a short distance downstream of the reattachment point. The boundary layer velocity near the wall gradually decreases along the airfoil. Eventually, the boundary layer separates near the trailing edge. The Reynolds stresses peak in the outer part of the boundary layer and the maximum amplitude also gradually increases along the chord.
    Keywords: Aerodynamics
    Type: NF1676L-25674 , AIAA Aviation Technology, Integration, and Operations Conference (AVIATION 2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tone of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.
    Keywords: Aerodynamics
    Type: GSFC-E-DAA-TN42724 , Scientific Ballooning Technologies Workshop 2017; May 16, 2017 - May 18, 2017; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-07-13
    Description: A 24 foot diameter 3-stage axial compressor powered by variable-speed induction motors provides the airflow in the closed-return 11- by 11-Foot Transonic Wind Tunnel (11-Foot TWT) Facility at NASA Ames Research Center at Moffett Field, California. The facility is part of the Unitary Plan Wind Tunnel, which was completed in 1955. Since then, upgrades made to the 11-Foot TWT such as flow conditioning devices and instrumentation have increased blockage and pressure loss in the tunnel, somewhat reducing the peak Mach number capability of the test section. Due to erosion effects on the existing aluminum alloy rotor blades, fabrication of new steel rotor blades is planned. This presents an opportunity to increase the Mach number capability of the tunnel by redesigning the compressor for increased pressure ratio. Challenging design constraints exist for any proposed design, demanding the use of the existing driveline, rotor disks, stator vanes, and hub and casing flow paths, so as to minimize cost and installation time. The current effort was undertaken to characterize the performance of the existing compressor design using available design tools and computational fluid dynamics (CFD) codes and subsequently recommend a new compressor design to achieve higher pressure ratio, which directly correlates with increased test section Mach number. The constant cross-sectional area of the compressor leads to highly diffusion factors, which presents a challenge in simulating the existing design. The CFD code APNASA was used to simulate the aerodynamic performance of the existing compressor. The simulations were compared to performance predictions from the HT0300 turbomachinery design and analysis code, and to compressor performance data taken during a 1997 facility test. It was found that the CFD simulations were sensitive to endwall leakages associated with stator buttons, and to a lesser degree, under-stator-platform flow recirculation at the hub. When stator button leakages were modeled, pumping capability increased by over 20 of pressure rise at design point due to a large reduction in aerodynamic blockage at the hub. Incorporating the stator button leakages was crucial to matching test data. Under-stator-platform flow recirculation was thought to be large due to a lack of seals. The effect of this recirculation was assessed with APNASA simulations recirculating 0.5, 1, and 2 of inlet flow about stators 1 and 2, modeled as axisymmetric mass flux boundary conditions on the hub before and after the vanes. The injection of flow ahead of the stators tended to re-energize the boundary layer and reduce hub separations, resulting in about 3 increased stall margin per 1 of inlet flow recirculated. In order to assess the value of the flow recirculation, a mixing plane simulation of the compressor which gridded the under-stator cavities was generated using the ADPAC CFD code. This simulation indicated that about 0.65 of the inlet flow is recirculated around each shrouded stator. This collective information was applied during the redesign of the compressor. A potential design was identified using HT0300 which improved overall pressure ratio by removing pre-swirl into rotor 1, replacing existing NASA 65 series rotors with double circular arc sections, and re-staggering rotors and the existing stators. The performance of the new design predicted by APNASA and HT0300 is compared to the existing design.
    Keywords: Aerodynamics
    Type: GT2017-65139 , GRC-E-DAA-TN40518 , Turbomachinery Technical Conference & Exposition; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-13
    Description: A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.
    Keywords: Aerodynamics
    Type: NF1676L-25627 , AIAA Aviation 2017 Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-07-13
    Description: A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.
    Keywords: Aerodynamics
    Type: AIAA Paper 2017-3058 , NF1676L-25543 , AIAA Aviation 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-07-13
    Description: A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.
    Keywords: Aerodynamics
    Type: JSC-CN-39271 , AIAA Aerodynamics Decelerator Systems Technology Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-13
    Description: Capsule Parachute Assembly System (CPAS) flight tests regularly stage a helicopter to observe inflation of 116 ft D o ringsail Main parachutes. These side views can be used to generate 3-D models of inflating canopies to estimate enclosed volume. Assuming a surface of revolution is inadequate because reefed canopies in a cluster are elongated due to mutual aerodynamic interference. A method was developed to combine the side views with upward looking HD video to account for non-circular cross sections. Approximating the cross sections as elliptical greatly improves accuracy. But since that correction requires manually tracing projected outlines, the actual irregular shapes can be used to generate high fidelity models. Compensation is also made for apparent tilt angle. Validation was accomplished by comparing perimeter and projected area with known line lengths and/or high quality photogrammetry.
    Keywords: Aerodynamics
    Type: JSC-CN-38970 , AIAA Aerodynamic Decelerator Systems Technology Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-13
    Description: Air Data Systems (FADS) are becoming more prevalent on re-entry vehicles, as evi- denced by the Mars Science Laboratory and the Orion Multipurpose Crew Vehicle. A FADS consists of flush-mounted pressure transducers located at various locations on the fore-body of a flight vehicle or the heat shield of a re-entry capsule. A pressure model converts the pressure readings into useful air data quantities. Two algorithms for converting pressure readings to air data have become predominant- the iterative Least Squares State Estimator (LSSE) and the Triples Algorithm. What follows herein is a new algorithm that takes advantage of the best features of both the Triples Algorithm and the LSSE. This approach employs the potential flow model and strategic differencing of the Triples Algorithm to obtain the defective flight angles; however, the requirements on port placement are far less restrictive, allowing for configurations that are considered optimal for a FADS.
    Keywords: Aerodynamics
    Type: JSC-CN-38856 , AIAA Aviation forum; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-13
    Description: Results from the Sixth AIAA CFD Drag Prediction Workshop Common Research Model Cases 2 to 5 are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. Cases 2 to 5 focused on force/moment and pressure predictions for the NASA Common Research Model wing-body and wing-body-nacelle-pylon configurations, including Case 2 - a grid refinement study and nacelle-pylon drag increment prediction study; Case 3 - an angle-of-attack buffet study; Case 4 - an optional wing-body grid adaption study; and Case 5 - an optional wing-body coupled aero-structural simulation. The Common Research Model geometry differed from previous workshops in that it was deformed to the appropriate static aeroelastic twist and deflection at each specified angle-of-attack. The grid refinement study used a common set of overset and unstructured grids, as well as user created Multiblock structured, unstructured, and Cartesian based grids. For the supplied common grids, six levels of refinement were created resulting in grids ranging from 7x10(exp 6) to 208x10(exp 6) cells. This study (Case 2) showed further reduced scatter from previous workshops, and very good prediction of the nacelle-pylon drag increment. Case 3 studied buffet onset at M=0.85 using the Medium grid (20 to 40x10(exp 6) nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Although the use of the prescribed aeroelastic twist and deflection at each angle-of-attack greatly improved the wing pressure distribution agreement with test data, many solutions still exhibited premature flow separation. The remaining solutions exhibited a significant spread of lift and pitching moment at each angle-of-attack, much of which can be attributed to excessive aft pressure loading and shock location variation. Four Case 4 grid adaption solutions were submitted. Starting with grids less than 2x10(exp 6) grid points, two solutions showed a rapid convergence to an acceptable solution. Four Case 5 coupled aerostructural solutions were submitted. Both showed good agreement with experimental data. Results from this workshop highlight the continuing need for CFD improvement, particularly for conditions with significant flow separation. These comparisons also suggest the need for improved experimental diagnostics to guide future CFD development.
    Keywords: Aerodynamics
    Type: NF1676L-26060 , 2017 AIAA SciTech; Jan 09, 2017 - Jan 13, 2017; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-13
    Description: We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.
    Keywords: Aerodynamics
    Type: NF1676L-26102 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-13
    Description: A NATO symposium held in 2008 identified many promising sensitivity analysis and un-certainty quantification technologies, but the maturity and suitability of these methods for realistic applications was not known. The STO Task Group AVT-191 was established to evaluate the maturity and suitability of various sensitivity analysis and uncertainty quantification methods for application to realistic problems of interest to NATO. The program ran from 2011 to 2015, and the work was organized into four discipline-centric teams: external aerodynamics, internal aerodynamics, aeroelasticity, and hydrodynamics. This paper presents an overview of the AVT-191 program content.
    Keywords: Aerodynamics
    Type: NF1676L-24607 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-07-13
    Description: A NATO symposium held in Greece in 2008 identified many promising sensitivity analysis and uncertainty quantification technologies, but the maturity and suitability of these methods for realistic applications was not clear. The NATO Science and Technology Organization, Task Group AVT-191 was established to evaluate the maturity and suitability of various sensitivity analysis and uncertainty quantification methods for application to realistic vehicle development problems. The program ran from 2011 to 2015, and the work was organized into four discipline-centric teams: external aerodynamics, internal aerodynamics, aeroelasticity, and hydrodynamics. This paper summarizes findings and lessons learned from the task group.
    Keywords: Aerodynamics
    Type: NF1676L-24614 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapvine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-13
    Description: The ability to re-enter the atmosphere at a desired location is important for spacecraft containing components that may survive re-entry. While impact point targeting has traditionally been initiated through impulsive burns with chemical thrusters on large vehicles such as the Space Shuttle, and the Soyuz and Apollo capsules, many small spacecraft do not host thrusters and require an alternative means of impact point targeting to ensure that falling debris do not cause harm to persons or property. This paper discusses the use of solely aerodynamic drag force to perform this targeting. It is shown that by deploying and retracting a drag device to vary the ballistic coefficient of the spacecraft, any desired longitude and latitude on the ground can be targeted provided that the maneuvering begins early enough and the latitude is less than the inclination of the orbit. An analytical solution based on perturbations from a numerically propagated trajectory is developed to map the initial state and ballistic coefficient profile of a spacecraft to its impact point. This allows the ballistic coefficient profile necessary to reach a given target point to be rapidly calculated, making it feasible to generate the guidance for the decay trajectory onboard the spacecraft. The ability to target an impact point using aerodynamic drag will enhance the capabilities of small spacecraft and will enable larger space vehicles containing thrusters to save fuel by more effectively leveraging the available aerodynamic drag.
    Keywords: Aerodynamics
    Type: KSC-E-DAA-TN36411 , AIAA Science and Technology Forum (SciTech 2017); Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-26
    Description: An aircraft includes a fuselage including a propulsion system supported within an aft portion. A thrust reverser is mounted proximate to the propulsion system for directing thrust in a direction to slow the aircraft. The thrust reverser directs thrust at an angle relative to a vertical plane to reduce interference on control surfaces and reduce generation of underbody lift.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-12
    Description: This chapter describes a new intelligent platform for learning optimal designs of morphing wings based on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics (CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with Spalart-Allmaras turbulence model) that computes flow over a tri-element inboard NASA Generic Transport Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice. To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology, which is based on manifold regularization techniques. A reasonable space of CFD solutions was populated and then the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where there were no CFD solutions available. The SSL methodology in conjunction with an elastodynamic solver (FiDDLE) was demonstrated in an earlier study involving structural health monitoring. These CFD-SSL methodologies define the new intelligent platform that forms the basis for our search for optimal design of wings. Although the present platform can be used in various other design and operational problems in engineering, this chapter focuses on the high-lift study of the VCK-VCCTEF system. Top few candidate design configurations were identified by solving the CFD problem in a small subset of the design space. The SSL component was trained on the design space, and was then used in a predictive mode to populate a selected set of test points outside of the given design space. The new design test space thus populated was evaluated by using the CFD component by determining the error between the SSL predictions and the true (CFD) solutions, which was found to be small. This demonstrates the proposed CFD-SSL methodologies for isolating the best design of the VCK-VCCTEF system, and it holds promise for quantitatively identifying best designs of flight systems, in general.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN37043
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-12
    Description: This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219661 , L-20872 , NF1676L-28058
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-12
    Description: This paper identifies the unsteady aerodynamic forces and moments for a typical section contained in the NACA Report No. 496, "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen. These quantities are named Theodorsen's aerodynamic forces (TAFs). The TAFs are compared to the generalized aerodynamic forces (GAFs) for a very high aspect ratio wing (AR = 20) at zero Mach number computed by the doublet lattice method. Agreement between TAFs and GAFs is very-good-to-excellent. The paper also reveals that simple proportionality relationships that are known to exist between the real parts of some GAFs and the imaginary parts of others also hold for the real and imaginary parts of the corresponding TAFs.
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219667 , L-20873 , NF1676L-28080
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2019-07-12
    Description: The near wake of a flat plate is investigated via direct numerical simulations (DNS). Many earlier experimental investigations have used thin plates with sharp trailing edges and turbulent boundary layers to create the wake. This results in large theta divided by D (sub TE) values (theta is the boundary layer momentum thickness towards the end of the plate and D (sub TE) is the trailing edge thickness). In the present study the emphasis is on relatively thick plates with circular trailing edges (CTE) resulting in theta divided by D values less than one (D is the plate thickness and the diameter of the CTE), and vigorous vortex shedding. The Reynolds numbers based on the plate length and D are 1.255 x 10 (sup 6) and 10,000, respectively. Two cases are computed; one with turbulent boundary layers on both the upper and lower surfaces of the plate (statistically the same, symmetric wake, Case TT) and, a second with turbulent and laminar boundary layers on the upper and lower surfaces, respectively (asymmetric case, Case TL). The data and understanding obtained is of considerable engineering interest, particularly in turbomachinery where the pressure side of an airfoil can remain laminar or transitional because of a favorable pressure gradient and the suction side is turbulent. Shed-vortex structure and phase-averaged velocity statistics obtained in the two cases are compared here. The upper negative shed vortices in Case TL (turbulent separating boundary layer) are weaker than the lower positive ones (laminar separating boundary layer) at inception (a factor 1.27 weaker in terms of peak phase-averaged spanwise vorticity at first appearance of a peak). The upper vortices weaken rapidly as they travel downstream. A second feature of interest in Case TL is a considerable increase in the peak phase-averaged, streamwise normal intensity (random component) with increasing streamwise distance (x divided by D) that occurs nears the positive vortex cores. This behavior is observed for a few diameters in the near wake. This is counter to Case TT where the peak value essentially decreases with increasing x divided by D. Both these effects are examined in detail and the important contributors are identified.
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219522 , ARC-E-DAA-TN43149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-07-13
    Description: The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.
    Keywords: Aerodynamics
    Type: AAS Paper 17-273 , NF1676L-25544 , AAS/AIAA Space Flight Mechanics Meeting; Feb 05, 2017 - Feb 09, 2017; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-13
    Description: Airframe-propulsion integration concepts that use boundary layer ingestion have the potential to reduce aircraft fuel burn. One concept that has been recently explored is NASA's Starc-ABL aircraft configuration, which offers the potential for 12% mission fuel burn reduction by using a turbo-electric propulsion system with an aft-mounted electrically driven boundary layer ingestion propulsor. This large potential for improved performance motivates a more detailed study of the boundary layer ingestion propulsor design, but to date, analyses of boundary layer ingestion have used uncoupled methods. These methods account for only aerodynamic effects on the propulsion system or propulsion system effects on the aerodynamics, but not both simultaneously. This work presents a new approach for building fully coupled propulsive-aerodynamic models of boundary layer ingestion propulsion systems. A 1D thermodynamic cycle analysis is coupled to a RANS simulation to model the Starc-ABL aft propulsor at a cruise condition and the effects variation in propulsor design on performance are examined. The results indicates that both propulsion and aerodynamic effects contribute equally toward the overall performance and that the fully coupled model yields substantially different results compared to uncoupled. The most significant finding is that boundary layer ingestion, while offering substantial fuel burn savings, introduces throttle dependent aerodynamics effects that need to be accounted for. This work represents a first step toward the multidisciplinary design optimization of boundary layer ingestion propulsion systems.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN37844 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-13
    Description: This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.
    Keywords: Aerodynamics
    Type: NF1676L-24684 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-07-13
    Description: This presentation describes aerodynamics and performance X-plane airworthiness guidelines and best practices.
    Keywords: Aerodynamics
    Type: AFRC-E-DAA-TN43168 , AIAA Aviation 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2019-07-13
    Description: The topic of laminar flow effects on hover performance is introduced with respect to some historical efforts where laminar flow was either measured or attempted. An analysis method is outlined using combined blade element, momentum method coupled to an airfoil analysis method, which includes the full e(sup N) transition model. The analysis results compared well with the measured hover performance including the measured location of transition on both the upper and lower blade surfaces. The analysis method is then used to understand the upper limits of hover efficiency as a function of disk loading. The impact of laminar flow is higher at low disk loading, but significant improvement in terms of power loading appears possible even up to high disk loading approaching 20 ps f. A optimum planform design equation is derived for cases of zero profile drag and finite drag levels. These results are intended to be a guide for design studies and as a benchmark to compare higher fidelity analysis results. The details of the analysis method are given to enable other researchers to use the same approach for comparison to other approaches.
    Keywords: Aerodynamics
    Type: NF1676L-25565 , AHS International Annual Forum and Technology Display; May 09, 2017 - May 11, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-13
    Description: The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.
    Keywords: Aerodynamics
    Type: JSC-CN-38969 , AIAA Aerodynamic Decelerator Systems Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-13
    Description: The Common Research Model wing-body configuration is investigated with the k-kL-MEAH2015 turbulence model implemented in FUN3D. This includes results presented at the Sixth Drag Prediction Workshop and additional results generated after the workshop with a nonlinear Quadratic Constitutive Relation (QCR) variant of the same turbulence model. The workshop provided grids are used, and a uniform grid refinement study is performed at the design condition. A large variation between results with and without a reconstruction limiter is exhibited on "medium" grid sizes, indicating that the medium grid size is too coarse for drawing conclusions in comparison with experiment. This variation is reduced with grid refinement. At a fixed angle of attack near design conditions, the QCR variant yielded decreased lift and drag compared with the linear eddy-viscosity model by an amount that was approximately constant with grid refinement. The k-kL-MEAH2015 turbulence model produced wing root junction flow behavior consistent with wind tunnel observations.
    Keywords: Aerodynamics
    Type: NF1676L-25300 , 2017 AIAA SciTech; Jan 09, 2017 - Jan 13, 2017; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-07-13
    Description: An experiment involving a Mach-scaled, 11:08 f t: diameter rotor was performed in hover during the summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance as a function of the laminar to turbulent transition state of the boundary layer, including both natural and fixed transition cases. The boundary layer transition locations were measured on both the upper and lower aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition locations showed extensive amounts, x=c〉0:90, of laminar flow on the lower surface at moderate to high thrust (CT=s 〉 0:068) for the full blade radius. The upper surface showed large amounts, x=c 〉 0:50, of laminar flow at the blade tip for low thrust (CT=s 〈 0:045). The objective of this paper is to provide an experimental data set for comparisons to newly developed and implemented rotor boundary layer transition models in CFD and rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft SimulationWorking Group
    Keywords: Aerodynamics
    Type: NF1676L-26006 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapvine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-13
    Description: A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
    Keywords: Aerodynamics
    Type: NF1676L-24932 , 2017 AIAA SciTech; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-07-13
    Description: In support of NASA's Commercial Supersonics Technology (CST) project, a test was conducted in the 9-by-7 ft. supersonic section of the NASA Ames Unitary Plan Wind Tunnel (UPWT). The tests were designed to study the interaction of shocks with a supersonic jet characteristic of those that may occur on a commercial supersonic aircraft. Multiple shock generating geometries were tested to examine the interaction dynamics as they pertain to sonic boom mitigation. An integral part of the analyses of these interactions are the interpretation of the data generated from the retroreflective Background Oriented Schlieren (RBOS) imaging technique employed for this test. The regularization- based optical flow methodology used to generate these data is described. Sample results are compared to those using normalized cross-correlation. The reduced noise, additional feature detail, and fewer false artifacts provided by the optical flow technique produced clearer time-averaged images, allowing for better interpretation of the underlying flow phenomena. These images, coupled with pressure signatures in the near field, are used to provide an overview of the detailed interaction flowfields.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN38216 , AIAA Sci-Tech; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-07-13
    Description: Typically, a limited number of dynamic pressure sensors is employed to determine the unsteady aerodynamic forces on large, slender aerospace structures. This paper describes a robust calculation procedure based on frequency-specific correlation lengths and validation from an experiment conducted on a flat panel coated with fast response pressure-sensitive paint. The first part of the paper describes the procedure used to analyze the pressure sensitive paint images and a calibration method using dynamic pressure transducers. Excellent comparison in spectra, coherence, and phase, measured via pressure-sensitive paint and dynamic pressure sensors, validates the pressure-sensitive paint data. The second part of the paper describes the buffet validation process, the first step of which was to use pressure histories from all pixels to determine the true force fluctuations. In the next step, only a selected number of pixels was chosen as virtual sensors, and a correlation-length-based buffet calculation procedure was applied to determine modeled force fluctuations. By progressively decreasing the number of virtual sensors, it was observed that the present calculation procedure was able to make a close estimate of the true unsteady forces only from eight sensors. It is believed that the present work provides the first validation of a buffet calculation procedure.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN56170 , Journal of Aircraft (ISSN 0021-8669) (e-ISSN 1533-3868); 54; 5; 1791-1801
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-07-13
    Description: Time-Resolved shadowgraph and infrared (IR) imaging were performed to investigate off-body and on-body flow features of a generic, 'hammer-head' launch vehicle geometry previously tested by Coe and Nute (1962). The measurements discussed here were one part of a large range of wind tunnel test techniques that included steady-state pressure sensitive paint (PSP), dynamic PSP, unsteady surface pressures, and unsteady force measurements. Image data was captured over a Mach number range of 0.6 less than or equal to M less than or equal to 1.2 at a Reynolds number of 3 million per foot. Both shadowgraph and IR imagery were captured in conjunction with unsteady pressures and forces and correlated with IRIG-B timing. High-speed shadowgraph imagery was used to identify wake structure and reattachment behind the payload fairing of the vehicle. Various data processing strategies were employed and ultimately these results correlated well with the location and magnitude of unsteady surface pressure measurements. Two research grade IR cameras were positioned to image boundary layer transition at the vehicle nose and flow reattachment behind the payload fairing. The poor emissivity of the model surface treatment (fast PSP) proved to be challenging for the infrared measurement. Reference image subtraction and contrast limited adaptive histogram equalization (CLAHE) were used to analyze this dataset. Ultimately turbulent boundary layer transition was observed and located forward of the trip dot line at the model sphere-cone junction. Flow reattachment location was identified behind the payload fairing in both steady and unsteady thermal data. As demonstrated in this effort, recent advances in high-speed and thermal imaging technology have modernized classical techniques providing a new viewpoint for the modern researcher
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN35004 , ScitTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-07-13
    Description: The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upperlower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips. The shed vorticity from prior crossing events will affect each pair of upperlower airfoils. The aerodynamic loads on the airfoil and flow field characteristics are computed before, at, and after each airfoil crossing. Results from the multiple-airfoil simulation show noticeable changes in the airfoil aerodynamics by introducing additional fluctuation in the aerodynamic time history.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN45472 , SAE International Journal of Aerospace; 10; 2; 68-76|SAE AeroTech Congress & Exhibition; Sep 26, 2017 - Sep 28, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN38582 , AIAA Aerospace Sciences Meeting; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-09
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-11-11
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-07-20
    Description: This work is a simulation technology demonstrator, of sweep jets used to suppress boundary layer separation and increase maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate stream wise direction. It also generate turbulent eddies at the oscillation frequency, which are typically large relative to boundary layer turbulence, and which augmenting mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from the oscillator, and the suppression of boundary layer separation by an array of sweep jets are performed. Simulation results are compared to data from a dedicated CFD validation experiment of a single oscillator and its sweep jet, and from a study of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets.2, 20 A critical step in the work is the development of realistic time-dependent sweep-jet in flow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the Over flow CFD solver, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN28318 , 2016 AIAA Science and Technology Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-07-13
    Description: A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.
    Keywords: Aerodynamics
    Type: NF1676L-22826 , 2016 AIAA Aviation Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019-07-13
    Description: An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.
    Keywords: Aerodynamics
    Type: NF1676L-22595 , 2016 AIAA Aviation Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN32736 , AIAA Aviation 2016 Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-07-13
    Description: The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN31619 , Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-07-13
    Description: Computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) swept wing modified with an experimental seamless, compliant flap called the Adaptive Compliant Trailing Edge (ACTE) flap. The stall characteristics of the modified ACTE wing were analyzed and compared with the unmodified, clean wing at the flight speed of 120 knots and altitude of 2300 feet above mean sea level, in free air as well as in ground effect. A polyhedral finite-volume unstructured full Navier-Stokes CFD code, STAR-CCM (registered trademark) plus (CD-adapco [Computational Dynamics Limited, United Kingdom, and Analysis & Design Application Co., United States]), was used. Steady Reynolds-averaged Navier-Stokes CFD simulations were conducted for a clean wing and the ACTE wings at various ACTE deflection angles in free air (-2 degrees, 15 degrees, and 30 degrees) as well as in ground effect (15 degrees and 30 degrees). Solution sensitivities to grid densities were examined. In free air, the ACTE wings are predicted to stall at lower angles of attack than the clean wing. In ground effect, all wings are predicted to stall at lower angles of attack than the corresponding wings in free air. Even though the lift curves are higher in ground effect than in free air, the maximum lift coefficients for all wings are lower in ground effect. Finally, the lift increase due to ground effect for the ACTE wing is predicted to be less than the clean wing.
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN32023 , AIAA Applied Aerodynamics Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-07-13
    Description: The NASA Environmentally Responsible Aviation (ERA) Project sponsored a series of computational and experimental investigations of the propulsion and airframe integration issues associated with Hybrid-Wing-Body (HWB) or Blended-Wing-Body (BWB) configurations. NASA collaborated with Boeing Research and Technology (BR&T) to conduct this research on a new twin-engine Boeing BWB transport configuration. The experimental investigations involved a series of wind tunnel tests with a 5.75-percent scale model conducted in two low-speed wind tunnels. This testing focused on the basic aerodynamics of the configuration and selection of the leading edge Krueger slat position for takeoff and landing. This paper reviews the results and analysis of these low-speed wind tunnel tests.
    Keywords: Aerodynamics
    Type: NF1676L-21491 , AIAA 2016 Science and Technology Forum; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-07-13
    Description: A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.
    Keywords: Aerodynamics
    Type: NF1676L-21486 , AIAA Aerospace Sciences Meeting (Sci-Tech 2016); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-07-13
    Description: The Columbia Scientific Balloon Facility provides Telemetry and Command systems necessary for balloon operations and science support. There are various Line-Of-Sight (LOS) and Over-The-Horizon (OTH) systems and interfaces that provide communications to and from a science payload. This presentation will discuss the current data throughput options available and future capabilities that may be incorporated in the LDB Support Instrumentation Package (SIP) such as doubling the TDRSS data rate. We will also explore some new technologies that could potentially expand the data throughput of OTH communications.
    Keywords: Aerodynamics
    Type: GSFC-E-DAA-TN32044 , The Scientific Ballooning Technologies Workshop; May 09, 2016 - May 11, 2016; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-07-13
    Description: Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN29078 , IEEE Pacific Visualization Symposium 2016; Apr 19, 2016 - Apr 22, 2016; Taipei; Taiwan, Province of China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-07-13
    Description: The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN29579 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-07-12
    Description: The Transonic Dynamics Tunnel (TDT) at the National Aeronautics and Space Administration's (NASA) Langley Research Center began research operations in early 1960. Since that time, over 600 tests have been conducted, primarily in the discipline of aeroelasticity. This paper presents a bibliography of the publications that contain data from these tests along with other reports that describe the facility, its capabilities, testing techniques, and associated research equipment. The bibliography is divided by subject matter into a number of categories. An index by author's last name is provided.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219355 , L-20739 , NF1676L-25167
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-07-12
    Description: A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered exceptional value to the experiment, which exceeded expectations. The results of this test will directly inform the planning for the first of a series of instrumented-model tests at the same Reynolds number. These tests will be performed on a slightly larger-scale model with the selected wing, and will include off-body measurements with LDV and PIV, steady and unsteady pressure measurements, and the flow-visualization techniques that are discussed in this report.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219348 , L-20760 , NF1676L-25653
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-07-12
    Description: As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219363 , L-20774 , NF1676L-26131
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019-07-12
    Description: The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219210 , L-20721 , NF1676L-24663
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-07-12
    Description: This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Arospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model in the IRT. From these molds, castings were made that closely replicated the features of the accreted ice. The castings were then mounted on the full-scale model in the F1 tunnel, and aerodynamic performance measurements were made using model surface pressure taps, the facility force balance system, and a large wake rake designed specifically for these tests. Tests were run over a range of Reynolds and Mach numbers. For each run, the model was rotated over a range of angles-of-attack that included airfoil stall. The benchmark data collected during these campaigns were, and continue to be, used for various purposes. The full-scale data form a unique, ice-accretion and associated aerodynamic performance dataset that can be used as a reference when addressing concerns regarding the use of subscale ice-accretion data to assess full-scale icing effects. Further, the data may be used in the development or enhancement of both ice-accretion prediction codes and computational fluid dynamic codes when applied to study the effects of icing. Finally, as was done in the wider study, the data may be used to help determine the level of geometric fidelity needed for artificial ice used to assess aerodynamic degradation due to aircraft icing. The structured, multifaceted approach used in this research effort provides a unique perspective on the aerodynamic effects of aircraft icing. The data presented in this report are available in electronic form upon formal approval by proper NASA and ONERA authorities.
    Keywords: Aerodynamics
    Type: NASA/TP-2016-218348 , E-18942 , GRC-E-DAA-TN15782
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-07-12
    Description: An approximately 6-percent scale model of the NASA Second-Generation Large Civil Tiltrotor (LCTR2) Aircraft was tested in the U.S. Army 7- by 10-Foot Wind Tunnel at NASA Ames Research Center January 4 to April 19, 2012, and September 18 to November 1, 2013. The full model was tested, along with modified versions in order to determine the effects of the wing tip extensions and nacelles; the wing was also tested separately in the various configurations. In both cases, the wing and nacelles used were adopted from the U.S. Army High Efficiency Tilt Rotor (HETR) aircraft, in order to limit the cost of the experiment. The full airframe was tested in high-speed cruise and low-speed hover flight conditions, while the wing was tested only in cruise conditions, with Reynolds numbers ranging from 0 to 1.4 million. In all cases, the external scale system of the wind tunnel was used to collect data. Both models were mounted to the scale using two support struts attached underneath the wing; the full airframe model also used a third strut attached at the tail. The collected data provides insight into the performance of the preliminary design of the LCTR2 and will be used for computational fluid dynamics (CFD) validation and the development of flight dynamics simulation models.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219394 , ARC-E-DAA-TN35499
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-07-12
    Description: In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219068 , ARC-E-DAA-TN29325
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2019-07-19
    Description: Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN28408 , Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019-07-20
    Description: Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, the need exists to understand the limitations of ground based testing by augmenting the analysis of experimental test results with Computational Fluid Dynamics (CFD) modeling. The immediate objective of the present research is to develop an XV-15 Tilt Rotor Research Aircraft rotor model for investigation of wind tunnel wall interference. The predicted performance of the XV-15 during various flight modes is compared to theoretical and experimental data. This research is performed to support wind tunnel tests scheduled for 2016. A mid-fidelity RANS solver, RotCFD, is used with an unsteady, incompressible flow model and a realizable k- turbulence model. The rotor is modeled using an actuator disk model or blade element model with a momentum source approach. In RotCFD the setup, grid generation and running of cases is faster than many CFD codes which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. Being able to accurately predict unsteady rotorcraft performance on desktop-class computers provides a quicker analysis of highly complex flows during the initial design phase.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN28085 , AHS Technical Meeting on Aeromechanics Design for Vertical Lift; Jan 20, 2016 - Jan 22, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN37001 , Division for Planetary Sciences and the European Planetary Science Congress (DPS-EPSC) Joint Meeting; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN37026 , International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and the International Transportation Electrification Conference (ESARS-ITEC); Nov 02, 2016 - Nov 04, 2016; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-13
    Description: This paper is concerned with the high Reynolds number flow over a spanwise periodic array of roughness elements with inter-element spacing of the order of the local boundary-layer thickness. While earlier work by Goldstein, Sescu, Duck and Choudhari (2010) and Goldstein, Sescu, Duck and Choudhari (2011) was mainly concerned with smaller roughness heights that produced relatively weak distortions of the downstream flow, the focus here is on extending the analysis to larger roughness heights and streamwise elongated planform shapes that together produce a qualitatively different, nonlinear behavior of the downstream wakes. The roughness scale flow now has a novel triple-deck structure that is somewhat different from related studies that have previously appeared in the literature. The resulting flow is formally nonlinear in the intermediate wake region, where the streamwise distance is large compared to the roughness dimensions but small compared to the downstream distance from the leading edge, as well as in the far wake region where the streamwise length scale is of the order of the downstream distance from the leading edge. In contrast, the flow perturbations in both of these wake regions were strictly linear in the earlier work by Goldstein et al (2010, 2011). This is an important difference because the nonlinear wake flow in the present case provides an appropriate basic state for studying the secondary instability and eventual breakdown into turbulence.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN43861 , Journal of Fluid Mechanics (ISSN 0022-1120) (e-ISSN 1469-7645); 796; 516-557
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-08-16
    Description: NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.
    Keywords: Aerodynamics
    Type: GRC-E-DAA-TN31805 , AIAA Atmospheric and Space Environments Conference; Jun 13, 2016 - Jun 17, 2016; Washington D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019-08-28
    Description: An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2020-01-13
    Description: On October 23, 2015, the Dawn spacecraft left the High Altitude Mapping Orbit (HAMO) around Ceres and began its final decent to the Low Altitude Mapping Orbit (LAMO), arriving on December 15. The transfer between the two science orbits, a tight spiraling trajectory with over 100 revolutions, required the operations team to perform weekly maneuver designs for a period of 50 days. While the first six weeks of the transfer executed as planned, unexpectedly the spacecraft incurred a multi-sigma delivery error to the final science orbit that was subsequently clean-up at the first orbit maintenance maneuver. In this paper we discuss the design architecture for the transfer in detail, including challenges the team faced in flying the transfer and lessons learned.
    Keywords: Aerodynamics
    Type: AIAA 2016-5427 , JPL-CL-16-3758 , AIAA/AAS Astrodynamics Specialist Conference; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-13
    Description: New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 in. and the scale model had a chord of 21 in. Reference tests were run with airspeeds of 100 and 130.3 kn and with MVD's of 85 and 170 micron. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number WeL. The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the nondimensional water-film thickness expression and the film Weber number Wef. All tests were conducted at 0 deg AOA. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For nondimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-D ice shape profiles at any selected span-wise location from the high fidelity 3-D scanned ice shapes obtained in the IRT.
    Keywords: Aerodynamics
    Type: NASA/CR-2016-219131 , AIAA Paper 2016-3278 , E-19255 , GRC-E-DAA-TN33583 , Atmospheric and Space Environments Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-13
    Description: An overview of recent progress regarding the computational aeroelastic and aeroservoelastic (ASE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed to date with a focus on unstructured CFD grids, computational aeroelastic analyses, sonic boom propagation studies that include static aeroelastic effects, and gust loads analyses. In addition, flutter boundaries using aeroelastic Reduced-Order Models (ROMs) are presented at various Mach numbers of interest. Details regarding a collaboration with the Royal Institute of Technology (KTH, Stockholm, Sweden) to design, fabricate, and test a full-span aeroelastic wind-tunnel model are also presented.
    Keywords: Aerodynamics
    Type: NF1676L-22984 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-13
    Description: Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.〈 or approx. 0.08 or z+ 〈 or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.
    Keywords: Aerodynamics
    Type: NF1676L-22902 , 2016 AIAA Science and Technology Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-13
    Description: This paper presents a status report on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the design, fabrication, modeling, and testing of a full-span lighter configuration in the Transonic Dynamics Tunnel (TDT). The goal of the test is to acquire transonic limit-cycle- oscillation (LCO) data, including accelerations, strains, and unsteady pressures. Finite element models (FEMs) and aerodynamic models are presented and discussed along with results obtained to date.
    Keywords: Aerodynamics
    Type: NF1676L-21641 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-13
    Description: The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.
    Keywords: Aerodynamics
    Type: NF1676L-21734 , AIAA Aerospace Sciences Meeting; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-13
    Description: Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.
    Keywords: Aerodynamics
    Type: NF1676L-21675 , 2016 AIAA Science and Technology Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-07-13
    Description: This study extends an existing semi-empirical approach to high-lift analysis by examining its effectiveness for use with a three-dimensional aerodynamic analysis method. The aircraft high-lift geometry is modeled in Vehicle Sketch Pad (OpenVSP) using a newly-developed set of techniques for building a three-dimensional model of the high-lift geometry, and for controlling flap deflections using scripted parameter linking. Analysis of the low-speed aerodynamics is performed in FlightStream, a novel surface-vorticity solver that is expected to be substantially more robust and stable compared to pressure-based potential-flow solvers and less sensitive to surface perturbations. The calculated lift curve and drag polar are modified by an empirical lift-effectiveness factor that takes into account the effects of viscosity that are not captured in the potential-flow solution. Analysis results are validated against wind-tunnel data for The Energy-Efficient Transport AR12 low-speed wind-tunnel model, a 12-foot, full-span aircraft configuration with a supercritical wing, full-span slats, and part-span double-slotted flaps.
    Keywords: Aerodynamics
    Type: NF1676L-21529 , 2016 AIAA SciTech Conference; Jan 04, 2014 - Jan 08, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019-07-13
    Description: A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.
    Keywords: Aerodynamics
    Type: NF1676L-21550 , 2016 AIAA Science and Technology Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NF1676L-21171 , Aerospace Flutter and Dynamics Council Meeting; Apr 16, 2015 - Apr 17, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-07-13
    Description: A computational design and analysis methodology is being developed to design a vehicle that can support significant regions of natural laminar flow (NLF) at supersonic flight conditions. The methodology is built in the CDISC design module to be used in this paper with the flow solvers Cart3D and USM3D, and the transition prediction modules BLSTA3D and LASTRAC. The NLF design technique prescribes a target pressure distribution for an existing geometry based on relationships between modal instability wave growth and pressure gradients. The modal instability wave growths (both on- and off-axes crossflow and Tollmien-Schlichting) are balanced to produce a pressure distribution that will have a theoretical maximum NLF region for a given streamwise wing station. An example application is presented showing the methodology on a generic supersonic transport wingbody configuration. The configuration has been successfully redesigned to support significant regions of NLF (approximately 40% of the wing upper surface by surface area). Computational analysis predicts NLF with transition Reynolds numbers (ReT) as high as 36 million with 72 degrees of leading-edge sweep (LE), significantly expanding the current boundary of ReT - LE combinations for NLF. This NLF geometry provides a total drag savings of 4.3 counts compared to the baseline wing-body configuration (approximately 5% of total drag). Off-design evaluations at near-cruise and low-speed, high-lift conditions are discussed, as well as attachment line contamination/transition concerns. This computational NLF design effort is a part of an ongoing cooperative agreement between NASA and JAXA researchers.
    Keywords: Aerodynamics
    Type: NF1676L-22754 , 2016 AIAA Aviation Technology, Integration, and Operations Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-07-13
    Description: Measurement systems are typically calibrated based on standard practices established by a metrology standards laboratory, for example the National Institute for Standards and Technology (NIST), or dictated by an organization's metrology manual. Therefore, the calibration is designed and executed according to an established procedure. However, for many aerodynamic research measurement systems a universally accepted standard, traceable approach does not exist. Therefore, a strategy for how to develop a calibration protocol is left to the developer or user to define based on experience and recommended practice in their respective industry. Wind tunnel balances are one such measurement system. Many different calibration systems, load schedules and procedures have been developed for balances with little consensus on a recommended approach. Especially lacking is guidance the number of calibration data points needed. Regrettably, the number of data points tends to be correlated with the perceived quality of the calibration. Often, the number of data points is associated with ones ability to generate the data rather than by a defined need in support of measurement objectives. Hence the title of the paper was conceived to challenge recent observations in the wind tunnel balance community that shows an ever increasing desire for more data points per calibration absent of guidance to determine when there are enough. This paper presents fundamental concepts and theory to aid in the development of calibration procedures for wind tunnel balances and provides a framework that is generally applicable to the characterization and calibration of other measurement systems. Questions that need to be answered are for example: What constitutes an adequate calibration? How much data are needed in the calibration? How good is the calibration? This paper will assist a practitioner in answering these questions by presenting an underlying theory on how to evaluate a calibration based on objective measures. This will enable the developer and user to design calibrations with quantified performance in terms of their capability to meet the user's objectives and a basis for comparing existing calibrations that may have been developed in an ad-hoc manner.
    Keywords: Aerodynamics
    Type: NF1676L-23560 , International Symposium on Strain-Gage Balances; May 16, 2016 - May 19, 2016; Mianyang; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NF1676L-22545 , ASME Verification and Validation Symposium; May 18, 2016 - May 20, 2016; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NF1676L-22651 , 2016 SIAM Conference on Parallel Processing or Scientific Computing; Apr 12, 2016 - Apr 15, 2016; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-07-13
    Description: The Exo-Brake is a simple, non-propulsive means of de-orbiting small payloads from orbital platforms such as the International Space Station (ISS). Two de-orbiting experiments with fixed surface area Exo-Brakes have been successfully conducted in the last two years on the TechEdSat-3 and -4 nano-satellite missions. The development of the free molecular flow aerodynamic data-base is presented in terms of angle of attack, projected front surface area variation, and altitude. Altitudes are considered ranging from the 400km ISS jettison altitude to 90km. Trajectory tools are then used to predict de-orbit/entry corridors with the inclusion of the key atmospheric and geomagnetic uncertainties. Control system strategies are discussed which will be applied to the next two planned TechEdSat-5 and -6 nano-satellite missions - thus increasing the targeting accuracy at the Von Karman altitude through the proposed drag modulation technique.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN33031 , International Planetary Probe Workshop; Jun 13, 2016 - Jun 17, 2016; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019-07-13
    Description: An overview of recent applications of the FUN3D CFD code to computational aeroelastic, sonic boom, and aeropropulsoservoelasticity (APSE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed including multiple unstructured CFD grids suitable for aeroelastic and sonic boom analyses. In addition, aeroelastic Reduced-Order Models (ROMs) are generated and used to rapidly compute the aeroelastic response and utter boundaries at multiple flight conditions.
    Keywords: Aerodynamics
    Type: NF1676L-21642 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN32582 , Applied Aerodynamic Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019-07-13
    Description: The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.
    Keywords: Aerodynamics
    Type: NF1676L-22024 , AHS International Technical Meeting on Aeromechanics Design for Vertical Lift; Jan 20, 2016 - Jan 22, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-13
    Description: Wind tunnel tests of a 5.75% scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14'x22' and NASA Ames Research Center (ARC) 40'x80' low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN28301 , AIAA Science and Technology Forum and Exposition 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-07-13
    Description: In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.
    Keywords: Aerodynamics
    Type: NF1676L-25387 , SC16: International Conference for High Performance Computing, Networking, Storage and Analysis; Nov 13, 2016 - Nov 18, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...