ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
  • Allgemeine Geographie
  • E62
  • Wiley-Blackwell  (5)
  • Wiley  (3)
  • Amsterdam and Rotterdam: Tinbergen Institute
  • 1
    Publication Date: 2017-04-04
    Description: Seismological, geological and geodetic data have been integrated to characterize the seismogenic structure of the late 2013-early 2014 moderate energy (maximum local magnitude MLmax = 4.9) seismic sequence that struck the interior of the Matese Massif, part of the Southern Apennines active extensional belt. The sequence, heralded by a ML = 2.7 foreshock, was characterized by two main shocks with ML = 4.9 and ML = 4.2, respectively, which occurred at a depth of ∼17–18 km. The sequence was confined in the 10–20 km depth range, significantly deeper than the 1997–1998 sequence which occurred few km away on the northeastern side of the massif above ∼15 km depth. The depth distribution of the 2013–14 sequence is almost continuous, albeit a deeper (16–19 km) and a shallower (11–15 km) group of events can be distinguished, the former including the main shocks and the foreshock. The epicentral distribution formed a ∼10 km long NNW–SSE trending alignment, which almost parallels the surface trace of late Pliocene–Quaternary southwest-dipping normal faults with a poor evidence of current geological and geodetic deformation. We built an upper crustal model profile for the eastern Matese massif through integration of geological data, oil exploration well logs and seismic tomographic images. Projection of hypocentres on the profile suggests that the seismogenic volume falls mostly within the crystalline crust and subordinately within the Mesozoic sedimentary cover of Apulia, the underthrust foreland of the Southern Apennines fold and thrust belt. Geological data and the regional macroseismic field of the sequence suggest that the southwest-dipping nodal plane of the main shocks represents the rupture surface that we refer to here as the Matese fault. The major lithological discontinuity between crystalline and sedimentary rocks of Apulia likely confined upward the rupture extent of the Matese fault. Repeated coseismic failure represented by the deeper group of events in the sequence, activated in a passive fashion the overlying ∼11–15 km deep section of the upper crustal normal faults. We consider the southwest-dipping Matese fault representative of a poorly known type of seismogenic structures in the Southern Apennines, where extensional seismogenesis and geodetic strain accumulation occur more frequently on NE-dipping, shallower-rooted faults. This is the case of the Boiano Basin fault located on the northern side of the massif, to which the 1997–1998 sequence is related. The close proximity of the two types of seismogenic faults at the Matese Massif is related to the complex crustal architecture generated by the Pliocene–early Pleistocene contractional and transpressional tectonics.
    Description: Published
    Description: 823-837
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Seismicity and tectonics ; Continental tectonics: extensional ; Crustal structure ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Until a decade ago, regression analyses for conversions between different types of magnitude were using only the ordinary least squares method,which assumes that the independent variable is error free, or the simple orthogonal regression method,which assumes equal uncertainties for the two variables. The recent literature became aware of the inadequacy of such approaches and proposes the use of general orthogonal regression methods that account for different uncertainties of the two regression variables. Under the common assumption that only the variance ratio η between the dependent and independent variables is known, we compared three of such general orthogonal regression methods that have been applied to magnitude conversions: the chi-square regression, the general orthogonal regression, and the weighted total least squares. Although their formulations might appear quite different, we show that, under appropriate conditions, they all compute almost exactly the same regression coefficients and very similar (albeit slightly different) formal uncertainties. The latter are in most cases smaller than those estimated by bootstrap simulation but the amount of the deviation depends on the data set and on the assumed variance ratio.
    Description: European Union project SHARE (Seismic Hazard Harmonization in Europe) within the ambit of Task 3.1‘European Earthquake Database’.
    Description: Published
    Description: 1135-1151
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations; Statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-24
    Description: After an earthquake, rapid, real-time assessment of hazards such as ground shaking and tsunami potential is important for early warning and emergency response. Tsunami potential depends on seafloor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of earthquake rupture. Currently, the primary discriminant for tsunami potential is the centroid-moment tensor magnitude, MCMT, representing the seismic potency LWD, and w estimated through an indirect, inversion procedure. The obtained MCMT and the implied LWD w value vary with the depth of faulting, assumed earth model and other factors, and is only available 30 min or more after an earthquake. The use of more direct procedures for hazard assessment, when available, could avoid these problems and aid in effective early warning. Here we present a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measures on P-wave seismograms—the dominant period on the velocity records, Td, and the likelihood that the high-frequency, apparent rupture-duration, T0, exceeds 50–55 s. T0 can be related to the critical parameters L and z, while Td may be related to W, D or z. For a set of recent, large earthquakes, we show that the period-duration product T T gives more information on tsunami impact and size than MCMT and other currently used d0w discriminants. All discriminants have difficulty in assessing the tsunami potential for oceanic strike-slip and backarc or upper plate, intraplate earthquake types. Our analysis and results suggest that tsunami potential is not directly related to the potency LWD from the ‘seismic’ faulting model, as is assumed with the use of the MCMT discriminant. Instead, knowledge of w rupture length, L, and depth, z, alone can constrain well the tsunami potential of an earthquake, with explicit determination of fault width, W, and slip, D, being of secondary importance. With available real-time seismogram data, rapid calculation of the direct, period-duration discriminant can be completed within 6–10 min after an earthquake occurs and thus can aid in effective and reliable tsunami early warning.
    Description: Published
    Description: 283-291
    Description: JCR Journal
    Description: restricted
    Keywords: earthquake dynamics ; earthquake source observation ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this paper we investigate nature and properties of narrow-band, transient seismic signals observed by a temporary array deployed in the Val Tiberina area (central Apennines, Italy). These signals are characterized by spindle-shaped, harmonic waveforms with no clear S-wave arrivals. The first portion of the seismograms exhibits a main frequency peak centred at 4.5 Hz, while the spectrum of the slowly decaying coda is peaked at about 2 Hz. Events discrimination is performed using a matched-filtering technique, resulting in a set of 2466 detections spanning the 2010 January–March time interval. From a plane-wave-fitting procedure, we estimate the kinematic properties of signals pertaining to a cluster of similar events. The repetition of measurements over a large number of precisely aligned seismograms allows for obtaining a robust statistics of horizontal slownesses and propagation azimuths associated with the early portion of the waveforms. The P-wave arrival exhibits horizontal slownesses around 0.1 s km−1, thus suggesting waves impinging at the array almost vertically. Separately, we use traveltimes measured at a sparse network to derive independent constraints on epicentral location. Ray parameters and azimuths are calibrated using slowness measurements from a local, well-located earthquake. After this correction, the joint solution from traveltime inversion and array analysis indicates a source region spanning the 1–3 km depth interval. Considerations related to the source depth and energy, and the occurrence rate which is not related to the daily and weekly working cycles, play against a surface, artificial source. Instead, the close resemblance of these signals to those commonly observed in volcanic environments suggest a source mechanism related to the resonance of a fluid–filled fracture, likely associated with instabilities in the flux of pressurized CO2.
    Description: Published
    Description: 918-928
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture and flow ; Earthquake source observations ; Interface waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-03
    Description: Computing the magnitude of an earthquake requires correcting for the propagation effects from the source to the receivers. This is often accomplished by performing numerical simulations using a suitable Earth model. In this work, the energy magnitude Me is considered and its determination is performed using theoretical spectral amplitude decay functions over teleseismic distances based on the global Earth model AK135Q. Since the high frequency part (above the corner frequency) of the source spectrum has to be considered in computing Me, the influence of propagation and site effects may not be negligible and they could bias the single station Me estimations. Therefore, in this study we assess the inter- and intrastation distributions of errors by considering the Me residuals computed for a large data set of earthquakes recorded at teleseismic distances by seismic stations deployed worldwide. To separate the inter- and intrastation contribution of errors, we apply a maximum likelihood approach to the Me residuals. We show that the interstation errors (describing a sort of site effect for a station) are within ±0.2 magnitude units for most stations and their spatial distribution reflects the expected lateral variation affecting the velocity and attenuation of the Earth's structure in the uppermost layers, not accounted for by the 1-D AK135Q model. The variance of the intrastation error distribution (describing the record-to-record component of variability) is larger than the interstation one (0.240 against 0.159), and the spatial distribution of the errors is not random but shows specific patterns depending on the source-to-station paths. The set of coefficients empirically determined may be used in the future to account for the heterogeneities of the real Earth not considered in the theoretical calculations of the spectral amplitude decay functions used to correct the recorded data for propagation effects.
    Description: Published
    Description: 1444-1454
    Description: JCR Journal
    Description: restricted
    Keywords: time series analysis ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The 2009 April 6, Mw= 6.3 L’Aquila earthquake occurred within a complex system of NW–SE trending normal faults in the Abruzzi Central Apennines (Italy). We analyse the coseismic deformation as measured by 〉70 global positioning system (GPS) stations, both from continuous and survey-mode networks, providing unprecedented details for a moderate normal faulting earthquake in Italy from GPS measurements. We use rectangular, uniform-slip, dislocations embedded in an elastic, homogeneous and isotropic half-space and a constrained, non-linear optimization algorithm, to solve for the best-fitting rectangular dislocation geometry and coseismic-slip distribution. We use a bootstrap approach to investigate uncertainties in the model parameters and define confidence bounds for all the inverted parameters. The rupture occurred on a N129°E striking and 50° southwestward dipping normal fault, in agreement with geological observations of surface breaks along the Paganica fault. Our distributed slip model exhibits a zone of relatively higher slip (〉60 cm) between ∼1.5 and ∼11 km depth, along a roughly downdip, NW–SE elongated patch, confined within the fault plane inverted assuming uniform-slip. The highest slip, of the order of ∼1 m, occurred on a ∼16 km2 area located at ∼5 km depth, SE of the mainshock epicentre. The analysis of model resolution suggests that slip at depth below ∼5 km can be resolved only at a spatial scale larger than 2 km, so a finer discretization of different asperities within the main patch of coseismic-slip is not allowed by GPS data. We compute the coseismic Coulomb stress changes in the crustal volume affected by the major aftershocks, and compare the results obtained from the uniform-slip and the heterogeneous-slip models. We find that most of the large aftershocks occurred in areas of Coulomb stress increase of 0.2–13 bar and that a deepening of the slip distribution down to a depth greater than 6 km in the SE part of the fault plane, in agreement with the inverted slip model, can explain the deepest, April 7, Mw 5.3 aftershock.
    Description: Published
    Description: 473-489
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Satellite geodesy ; Space geodetic surveys ; Earthquake ground motions ; Earthquake source observations ; Earthquake interaction, forecasting, and prediction ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-03
    Description: After an earthquake, rapid, real-time assessment of hazards such as ground shaking and tsunami potential is important for early warning and emergency response. Tsunami potential depends on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of earthquake rupture. Currently, the primary discriminant for tsunami potential is the centroid-moment tensor magnitude, MwCMT, representing the seismic potency LWD, and estimated through an indirect, inversion procedure. The obtained MwCMT and the implied LWD value vary with the depth of faulting, assumed earth model and other factors, and is only available 30 min or more after an earthquake. The use of more direct procedures for hazard assessment, when available, could avoid these problems and aid in effective early warning. Here we present a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measures on P-wave seismograms – the dominant period on the velocity records, Td, and the likelihood that the high-frequency, apparent rupture-duration, T0, exceeds 50-55 sec. T0 can be related to the critical parameters L and z, while Td may be related to W, D or z. For a set of recent, large earthquakes, we show that the period-duration product TdT0 gives more information on tsunami impact and size than MwCMT and other currently used discriminants. All discriminants have difficulty in assessing the tsunami potential for oceanic strike-slip and back-arc or upper-plate, intraplate earthquake types. Our analysis and results suggest that tsunami potential is not directly related to the potency LWD from the “seismic” faulting model, as is assumed with the use of the MwCMT discriminant. Instead, knowledge of rupture length, L, and depth, z, alone can constrain well the tsunami potential of an earthquake, with explicit determination of fault width, W, and slip, D, being of secondary importance. With available real-time seismogram data, rapid calculation of the direct, period- duration discriminant can be completed within 6-10 min after an earthquake occurs and thus can aid in effective and reliable tsunami early warning.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Earthquake dynamics ; Earthquake source observations ; Seismic monitoring ; Body waves ; Early warning ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Journal cover
    Unknown
    Wiley | Royal Geographical Society
    Online: 1(1).2014 –
    Publisher: Wiley , Royal Geographical Society
    Electronic ISSN: 2054-4049
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Keywords: Allgemeine Geographie ; Umweltforschung
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...