ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases  (4)
  • University of Patras, Greece  (2)
  • American Association for the Advancement of Science  (1)
  • Birkhauser  (1)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-06-15
    Beschreibung: The Amik Basin is an asymmetrical composite transtensional basin developed between the seismically active left-lateral Dead Sea Fault (DSF) splays and the left-lateral oblique-slip Karasu Fault segment during neotectonic period. The relationship between the DSF and the East Anatolian Fault Zone is important as it represents a triple junction between Arabian Plate, African Plate and Anatolian Block in which the Amik Basin developed. The basin was formed on a pre-Miocene basement consisting of two rock series: Paleozoic crustal units with a Mesozoic allochthonous ophiolitic complex and ~1300 m thick Upper Miocene-Lower Pliocene sedimentary sequence. Plio-Quaternary sediments and Quaternary volcanics unconformably overlie the deformed and folded Miocene beds. Quaternary alkali-basaltic volcanism, derived from a metasomatized asthenospheric or lithospheric mantle, is most probably related to the syn-collisional transtensional strike-slip deformation in the area. Active faults in the region have the potential to generate catastrophic earthquakes (M〉7). Nineteen samples of cold and thermal groundwaters have been collected over the Amik Basin area for dissolved gas analyses as well as two samples from the gas seeps, and one bubbling gas from a thermal spring Samples were analysed for their chemical and isotopic (He, C) composition. On the basis of their chemical composition, three main groups can be recognized. Most of the dissolved gases (16; Group I) collected from springs or shallow wells (〈 150 m depth), contain mainly atmospheric gasses with very limited H2 (〈 80 ppm) and CH4 (1– 2700 ppm) contents and minor concentrations of CO2 (0.5–11.2 %). The isotopic composition of Total Dissolved Carbon evidences a prevailing organic contribution with possible dissolution of carbonate rocks. However the CO2-richest sample shows a small but significant deep (probably mantle) contribution which is also evidenced by its He isotopic composition. Further three samples, taken from the northern part of the basin close to Quaternary volcanic outcrops and main tectonic structures, also exhibit a small mantle He contribution (Fig. 1). The two dissolved gases (Group II) collected from deep boreholes (〉 1200 m depth) are typical of hydrocarbon reservoirs being very rich in CH4 (〉 78 %) and N2 (〉 13%). The water composition of these samples is also distinctive of saline connate waters (Cl- and B-rich, SO4-poor). Isotopic composition of methane (δ13C ~ -65‰) indicates a biogenic origin while He-isotopic composition points to a prevailing crustal signature for one (R/Ra 0.16) of the sites and a small mantle contribution for the other (R/Ra 0.98) (Fig. 1). The three free gas samples (Group III), taken at two sites within the ophiolitic basement west of the basin, have the typical composition of gas generated by low temperature serpentinisation processes with high hydrogen (37–50 %) and methane (10–61 %) concentrations. While all three gases show an almost identical δD-H2 of ~ -750‰, two of them display an isotopic composition of methane (δ13C ~ -5‰; δD ~ -105‰) and a C1/[C2+C3] ratio (~100) typical of abiogenic hydrocarbons and a significant contribution of mantle-type helium (R/Ra: 1.33). The composition of these two gasses is comparable to that of the gasses issuing in similar geologic conditions (Chimera-Turkey, Zambales-Philippine and Oman ophiolites). The gas composition of the other site evidences a contribution of a crustal (thermogenic) component (δ13C-CH4 ~ -30‰; δD-CH4 ~ -325‰; C1/[C2+C3] ~ 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07) (Fig. 1). These first results highlight contributions of mantle-derived volatiles possibly drained towards shallow levels by the DSF and other parallel structures crossing the basin showing a tectonic control of the fluids circulating within the Basin .
    Beschreibung: Published
    Beschreibung: Patras, Greece
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): dissolved gases ; natural gas manifestations ; helium isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: The study area is a 130 km long fast spreading graben in Central Greece bordered by active faults. Its complex geodynamical setting includes the presence at depth of a subduction slab responsible for the recent (Quaternary) volcanic activity in the area which possibly represents the northward continuation of the South Aegean active volcanic arc. To the area belongs also the western termination of the North-Anatolian fault a tectonic lineament of regional importance. The high geothermal gradient of the area is evidenced by the presence of many thermal springs with temperatures from 19 to 82 °C, issuing along the normal faults bordering the graben. In the period 2004-2012 more than 60 gas and water samples have been collected and their chemical and isotopic analysis revealed a wide range of compositions. Going from west to east the gas composition changes (Fig. 1) from CH4- to CO2-dominated passing through mixed N2-CH4 and N2-CO2 compositions, while at the same time the He isotopic composition goes from typical crustal values (0.02 R/Ra) up to 0.87 R/Ra (corrected for air contamination), showing in the easternmost sites a small but significant mantle input (up to ~ 10%). Isotopic composition of CH4-C indicates a thermogenic origin for the CH4-rich samples (δ13C from -50 to -37 ‰) and hydrothermal origin for the remaining samples (〉 -25‰). Positive δ15N values (around +2 ‰) indicate a contribution of crustal derived nitrogen for the N2-rich samples. The most pristine values of δ13C(CO2) refer to the most CO2-rich samples. These values (~ -3 ‰) point to a mixed mantle-marine carbonate source. Lower δ13C values (-10 ÷ -5 ‰) of the other sites can be explained by loss of CO2 due to dissolution processes. Also temperature and salinity of the waters shows differences along the graben increasing from west to east (Fig. 2). Two main groups can be separated on the basis of the total dissolved salts (TDS). The first, represented by dilute waters (TDS 〈 500 mg/l), is found in the westernmost sites characterised by the presence of CH4-rich and mixed N2-CH4 gases. The remaining waters display higher salinities (TDS from 9 to 35 g/l) due to the mixing with high salinity waters. The water composition can be explained by mixing of two end-members, one with low salinity of meteoric origin and the other with high salinity of marine origin. The mixing can be evidenced in Fig. 2. Low salinity waters show low chloride contents and their light water isotope composition overlaps the field of the cold groundwaters of the area confirming their meteoric origin. High salinity waters are aligned along the mixing line between the cold groundwaters and the seawater confirming the contribution of marine component. Most of the water compositions in the triangular graph of Giggenbach fall in the field of the non equilibrated waters being therefore unsuitable for geothermometric estimations. Only the easternmost sites (Gialtra, Ilion and Edipsos) falling the field of the partially equilibrated waters yield estimated temperatures in the range 150-170 °C. Silica geothermometers confirm these estimations. This study revealed that the complex geodynamic setting of the area is clearly reflected in the wide compositional range of the gases collected in the area that evidence contributions from different end-members (atmosphere, crust, mantle and hydrothermal systems). Water chemistry can be explained mainly from the mixing of a meteoric low-salinity end-member with a high-salinity marine end-member partially modified by hydrothermal water-rock interactions. The highest estimated temperatures in the hydrothermal reservoirs are in the range 150-170 °C.
    Beschreibung: Published
    Beschreibung: Patras, Greece
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): gas geochemistry ; hydrothermal systems ; Helium isotopes ; Carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Extended abstract
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science
    Publikationsdatum: 2017-04-04
    Beschreibung: BREVIA
    Beschreibung: Current emission inventories require an additional "unknown" source to balance the global atmospheric budgets of ethane (C2H6). Here, we provide evidence that a substantial part of the missing source can be attributed to natural gas seepage from petroliferous, geothermal, and volcanic areas. Such geologic sources also inject propane (C3H8) into the atmosphere. The analysis of a large data set of methane (CH4), ethane, and propane concentrations in surface gas emissions of 238 sites from different geographic and geologic areas, coupled with published estimates of geomethane emissions, suggests that Earth's degassing accounts for at least 17% and 10% of total ethane and propane emissions, respectively.
    Beschreibung: Published
    Beschreibung: 478
    Beschreibung: 3.8. Geofisica per l'ambiente
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Ethane ; Propane ; Geologic emissions ; Seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: Hydrochemical (major and some minor constituents), stable isotope (dDH2O and d18OH2O; d13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg〉Na- SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, d18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/ water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and d13CTDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from )10.0& and 2.8&, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios (d13CCO2 value from )3 to 0& vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/ or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.
    Beschreibung: Published
    Beschreibung: 781-807
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Thermal waters, ; chemical and isotope composition, ; dissolved gases ; d13C ; Sicily. ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...