ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases  (4)
  • Blackwell Publishing Ltd  (2)
  • University of Patras, Greece  (2)
  • MDPI Publishing
  • 1
    Publikationsdatum: 2021-06-15
    Beschreibung: The Amik Basin is an asymmetrical composite transtensional basin developed between the seismically active left-lateral Dead Sea Fault (DSF) splays and the left-lateral oblique-slip Karasu Fault segment during neotectonic period. The relationship between the DSF and the East Anatolian Fault Zone is important as it represents a triple junction between Arabian Plate, African Plate and Anatolian Block in which the Amik Basin developed. The basin was formed on a pre-Miocene basement consisting of two rock series: Paleozoic crustal units with a Mesozoic allochthonous ophiolitic complex and ~1300 m thick Upper Miocene-Lower Pliocene sedimentary sequence. Plio-Quaternary sediments and Quaternary volcanics unconformably overlie the deformed and folded Miocene beds. Quaternary alkali-basaltic volcanism, derived from a metasomatized asthenospheric or lithospheric mantle, is most probably related to the syn-collisional transtensional strike-slip deformation in the area. Active faults in the region have the potential to generate catastrophic earthquakes (M〉7). Nineteen samples of cold and thermal groundwaters have been collected over the Amik Basin area for dissolved gas analyses as well as two samples from the gas seeps, and one bubbling gas from a thermal spring Samples were analysed for their chemical and isotopic (He, C) composition. On the basis of their chemical composition, three main groups can be recognized. Most of the dissolved gases (16; Group I) collected from springs or shallow wells (〈 150 m depth), contain mainly atmospheric gasses with very limited H2 (〈 80 ppm) and CH4 (1– 2700 ppm) contents and minor concentrations of CO2 (0.5–11.2 %). The isotopic composition of Total Dissolved Carbon evidences a prevailing organic contribution with possible dissolution of carbonate rocks. However the CO2-richest sample shows a small but significant deep (probably mantle) contribution which is also evidenced by its He isotopic composition. Further three samples, taken from the northern part of the basin close to Quaternary volcanic outcrops and main tectonic structures, also exhibit a small mantle He contribution (Fig. 1). The two dissolved gases (Group II) collected from deep boreholes (〉 1200 m depth) are typical of hydrocarbon reservoirs being very rich in CH4 (〉 78 %) and N2 (〉 13%). The water composition of these samples is also distinctive of saline connate waters (Cl- and B-rich, SO4-poor). Isotopic composition of methane (δ13C ~ -65‰) indicates a biogenic origin while He-isotopic composition points to a prevailing crustal signature for one (R/Ra 0.16) of the sites and a small mantle contribution for the other (R/Ra 0.98) (Fig. 1). The three free gas samples (Group III), taken at two sites within the ophiolitic basement west of the basin, have the typical composition of gas generated by low temperature serpentinisation processes with high hydrogen (37–50 %) and methane (10–61 %) concentrations. While all three gases show an almost identical δD-H2 of ~ -750‰, two of them display an isotopic composition of methane (δ13C ~ -5‰; δD ~ -105‰) and a C1/[C2+C3] ratio (~100) typical of abiogenic hydrocarbons and a significant contribution of mantle-type helium (R/Ra: 1.33). The composition of these two gasses is comparable to that of the gasses issuing in similar geologic conditions (Chimera-Turkey, Zambales-Philippine and Oman ophiolites). The gas composition of the other site evidences a contribution of a crustal (thermogenic) component (δ13C-CH4 ~ -30‰; δD-CH4 ~ -325‰; C1/[C2+C3] ~ 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07) (Fig. 1). These first results highlight contributions of mantle-derived volatiles possibly drained towards shallow levels by the DSF and other parallel structures crossing the basin showing a tectonic control of the fluids circulating within the Basin .
    Beschreibung: Published
    Beschreibung: Patras, Greece
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): dissolved gases ; natural gas manifestations ; helium isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: The paper describes a case of a natural emission of methane from soil in an urban development area, generating a significant risk for the local population and buildings, due to gas explosiveness and asphyxiation potential. The site is located on the south-western margin of the East-European Platform in eastern Romania, in a hydrocarbon-prone area crossed by the Pericarpathian lineament and regional faults. Molecular composition of gas and stable isotopic analyses of methane (CH4〉90%, δ to the power of 13 C1: -49.4‰, δD1: -173.4‰) indicate a dominant thermogenic origin, with significant amounts of C2-C5 alkanes (~5%), likely migrating through faults from a deep reservoir. Possible candidates are the Saucesti and Secuieni gas fields, located in the same petroleum system. Two surface geochemical surveys, based on closed-chamber flux measurements, were performed to assess the degassing intensity and the extent of the affected area. Methane fluxes from soil reach orders of 10 to the power of 4 mg m to the power of -2 day to the power of -1. Gas seepage mainly occurs in one zone 30 000 m2 wide, and it is likely controlled by channeling along a fault and gas accumulation in permeable sediments and shallow subsoil. The estimated total CH4 emission is about 40 t year to the power of -1 CH4, of which 8–9 t year to the power of -1 are naturally released from soil and 30–35 t year to the power of -1 are emitted from shallow boreholes. These wells have likely channeled the gas accumulated in shallow alluvial sediment but gas flux from soil is still high and mitigation measures are needed to reduce the risk for humans and buildings.
    Beschreibung: Published
    Beschreibung: 311-320
    Beschreibung: 3.8. Geofisica per l'ambiente
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): gas hazard ; methane seepage ; soil degassing ; thermogenic gas ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: The Chimaera gas seep, near Antalya (SW Turkey), has been continuously active for thousands of years and it is known to be the source of the first Olympic fire in the Hellenistic period. New and thorough molecular and isotopic analyses including methane (approximately 87% v/v; δ to the power of 13 C1 from -7.9‰ to -12.3‰; δ to the power of 13 D1 from -119‰ to -124‰), light alkanes (C2 + C3 + C4 + C5 = 0.5%; C6+: 0.07%; δ to the power of 13 C2 from -24.2‰ to -26.5‰; δ to the power of 13 C3 from -25.5‰ to -27‰), hydrogen (7.5–11%), carbon dioxide (0.01–0.07%; δ to the power of 13 CCO2: -15‰), helium (approximately 80 ppmv; R/Ra: 0.41) and nitrogen (2–4.9%; δ to the power of 15 N from -2‰ to -2.8‰) converge to indicate that the seep releases a mixture of organic thermogenic gas, related to mature type III kerogen occurring in Palaeozoic and Mesozoic organic-rich sedimentary rocks, and abiogenic gas produced by low-temperature serpentinization in the Tekirova ophiolitic unit. Methane is not related to mantle or magma degassing. The abiogenic fraction accounts for about half of the total gas released, which is estimated to be well beyond 50 ton year to the power of -1. Ophiolites and limestones are in contact along a tectonic dislocation leading to gas mixing and migration to the Earth’s surface. Chimaera represents the biggest emission of abiogenic methane on land discovered so far. Deep and pressurized gas accumulations are necessary to sustain the Chimaera gas flow for thousands of years and are likely to have been charged by an active inorganic source.
    Beschreibung: Published
    Beschreibung: 263-273
    Beschreibung: 3.8. Geofisica per l'ambiente
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): abiogenic methane ; isotopic composition ; ophiolites ; seep ; serpentinization ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: The study area is a 130 km long fast spreading graben in Central Greece bordered by active faults. Its complex geodynamical setting includes the presence at depth of a subduction slab responsible for the recent (Quaternary) volcanic activity in the area which possibly represents the northward continuation of the South Aegean active volcanic arc. To the area belongs also the western termination of the North-Anatolian fault a tectonic lineament of regional importance. The high geothermal gradient of the area is evidenced by the presence of many thermal springs with temperatures from 19 to 82 °C, issuing along the normal faults bordering the graben. In the period 2004-2012 more than 60 gas and water samples have been collected and their chemical and isotopic analysis revealed a wide range of compositions. Going from west to east the gas composition changes (Fig. 1) from CH4- to CO2-dominated passing through mixed N2-CH4 and N2-CO2 compositions, while at the same time the He isotopic composition goes from typical crustal values (0.02 R/Ra) up to 0.87 R/Ra (corrected for air contamination), showing in the easternmost sites a small but significant mantle input (up to ~ 10%). Isotopic composition of CH4-C indicates a thermogenic origin for the CH4-rich samples (δ13C from -50 to -37 ‰) and hydrothermal origin for the remaining samples (〉 -25‰). Positive δ15N values (around +2 ‰) indicate a contribution of crustal derived nitrogen for the N2-rich samples. The most pristine values of δ13C(CO2) refer to the most CO2-rich samples. These values (~ -3 ‰) point to a mixed mantle-marine carbonate source. Lower δ13C values (-10 ÷ -5 ‰) of the other sites can be explained by loss of CO2 due to dissolution processes. Also temperature and salinity of the waters shows differences along the graben increasing from west to east (Fig. 2). Two main groups can be separated on the basis of the total dissolved salts (TDS). The first, represented by dilute waters (TDS 〈 500 mg/l), is found in the westernmost sites characterised by the presence of CH4-rich and mixed N2-CH4 gases. The remaining waters display higher salinities (TDS from 9 to 35 g/l) due to the mixing with high salinity waters. The water composition can be explained by mixing of two end-members, one with low salinity of meteoric origin and the other with high salinity of marine origin. The mixing can be evidenced in Fig. 2. Low salinity waters show low chloride contents and their light water isotope composition overlaps the field of the cold groundwaters of the area confirming their meteoric origin. High salinity waters are aligned along the mixing line between the cold groundwaters and the seawater confirming the contribution of marine component. Most of the water compositions in the triangular graph of Giggenbach fall in the field of the non equilibrated waters being therefore unsuitable for geothermometric estimations. Only the easternmost sites (Gialtra, Ilion and Edipsos) falling the field of the partially equilibrated waters yield estimated temperatures in the range 150-170 °C. Silica geothermometers confirm these estimations. This study revealed that the complex geodynamic setting of the area is clearly reflected in the wide compositional range of the gases collected in the area that evidence contributions from different end-members (atmosphere, crust, mantle and hydrothermal systems). Water chemistry can be explained mainly from the mixing of a meteoric low-salinity end-member with a high-salinity marine end-member partially modified by hydrothermal water-rock interactions. The highest estimated temperatures in the hydrothermal reservoirs are in the range 150-170 °C.
    Beschreibung: Published
    Beschreibung: Patras, Greece
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): gas geochemistry ; hydrothermal systems ; Helium isotopes ; Carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Extended abstract
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...