ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Photosystem II  (1,079)
  • Elsevier  (828)
  • Springer  (251)
  • American Meteorological Society
  • Springer Nature
Collection
Keywords
Publisher
  • 1
    ISSN: 1432-072X
    Keywords: Blue-green algae ; Photosystem II ; Diphenylcarbazide ; 3-(3,4-Dichlorophenyl)-N-N′-dimethyl urea ; Sensitivity ; Oscillatoria chalybea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thylakoids of Oscillatoria chalybea are able to split water. The Hill reaction of these thylakoids is sensitive to DCMU. Diphenylcarbazide can substitute for water as the electron donor to photosystem II with these fully functioning thylakoids. However, the diphenylcarbazide photooxidation is completely insensitive to 3-(3,4-dichlorophenyl)-N-N′-dimethyl urea (DCMU) at high diphenylcarbazide concentrations. In with Tris-treated Oscillatoria thylakoids the water splitting capacity is lost and diphenylcarbazide restores electron transport through photosystem II as occurs with higher plant chloroplasts. However, also these photoreactions are insensitive to DCMU. If diphenylcarbazide acts in Oscillatoria as an electron donor to photosystem II the result suggests that diphenylcarbazide feeds in its electrons behind the DCMU inhibition site. This in turn indicates that in Oscillatoria the site of inhibition of DCMU is on the donor side of photosystem II.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Fluorescence induction ; Oxygen evolution ; Photosystem II ; DCMU-sensitivity ; Electron transport ; Oscillatoria chalybea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The filamentous cyanobacterium Oscillatoria chalybea grows phototrophically on a mineral medium in the presence of either nitrate or ammonium ions as nitrogen source at similar growth rates. In the absence of any combined nitrogen source in the medium the cyanobacterium also grows, although at a reduced growth rate. The steady state rate of oxygen evolution by filaments from these three culture conditions is approximately constant if compared on an equal chlorophyll basis. Qualitative differences, however, emerge, if transient phenomena, e.g. the oxygen gush, are investigated. Only nitrate-and nitrogen-free-grown cultures show an oxygen gush, whereas ammonium sulfate-grown cultures do not show this phenomenon. Fluorescence induction in O. chalybea shows a fast monophasic rise, comparable to the fluorescence rise curves of higher plant chloroplasts in the presence of dithionite. The steady state level of fluorescence in ammonium sulfate-grown cells is up to seven times higher than in nitrate-grown cells when compared on an equal chlorophyll basis. In ammonium sulfate-grown cells, DCMU (N,N′-3,4-Dichlorophenyl dimethylurea) causes a further increase in fluorescence level. In nitrate-grown cyanobacteria, however, the effect of DCMU consists of a decrease of the steady state level of fluorescence. In context with earlier research on Anabaena cylindrica, another filamentous cyanobacterium, it appears that the type of the nitrogen source used for growth determines the main location of the DCMU-block in this organism. It thus appears that in O. chalybea the site of DCMU inhibition lies on the oxygen-evolving side of photosystem II, if the organism is grown on nitrate. If grown on ammonium sulfate, no substantial difference of the location of the inhibition site when compared to algae or higher plant chloroplasts is found. Thylakoid preparations of O. chalybea perform the usual Hill reactions with ferricyanide, p-benzoquinone or silicomolybdate as electron acceptors. In each case it is seen that with thylakoids of nitrate-grown cells the steady-state level of fluorescence is lowered by DCMU in the presence of these acceptors, which should be the case, if DCMU inhibits electron transfer on the donor side of photosystem II. According to the literature silicomolybdate accepts electrons mainly before the DCMU-block in higher plant chloroplasts. Hence, in higher plants this reaction is mainly DCMU-insensitive. In thylakoids of O. chalybea, however, the Hill reaction with silicomolybdate is DCMU-sensitive which provides further evidence that the DCMU-block is on the oxygen-evolving side of photosystem II in O. chalybea provided the cells have been grown on nitrate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 138 (1984), S. 299-305 
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Oscillatoria ; Anoxygenic photosynthesis ; Sulfide ; Photosystem II ; Photoreduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Oscillatoria amphigranulata is a fast-growing (3 doublings/day) cyanobacterium isolated from sulfide hot springs in New Zealand. Photosynthesis, as measured by incorporation of [14C]-HCO 3 - , was initially inhibited by 0.3–1.5 mM sulfide at pH 7.9–8.1. However, conversion to sulfide-dependent anoxygenic photosynthesis occurred in about 2 h or less under light intensities of 3–14 klx. Under the stimulation of higher light intensity (8–14 klx) a partial recovery of oxygenic photosynthesis also occurred. It was concluded that oxygenic photosynthesis was responsible for 21–42% of the total incorporation at sulfide concentrations of 1.0–0.3 mM, respectively. This contribution was suppressed at 1.5 mM sulfide and not elicited under lower light intensities (3–7 klx). As judged by the inhibitory effect of 10 μg/ml chloramphenicol protein synthesis was required for attainment of both anoxygenic photosynthesis and photosystem II recovery. Sulfide could not be replaced by thiosulfate, elemental sulfur or dithionite as electron donors in photosynthesis, but elemental sulfur could serve as the sole assimilatory source of sulfur. Oxygenic photosynthesis was inhibited by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] or DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), but sulfide relieved the effect of either inhibitor in adapted cells, indicating that electrons derived from sulfide enter the photosynthetic electron transport chain at a point beyond plastoquinone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 519-522 
    ISSN: 1432-072X
    Keywords: Chlorogloeopsis fritschii ; Photosystem II ; Photosystem I ; Shikonin isovalerate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Shikonin isovalerate, extracted from the roots of the desert plant Arnebia decumbens, was tested for its effect on photosynthetic electron transport system of Chlorogloeopsis fritschii. The ferricyanide-Hill reaction with water and DPC as electron donors was inhibited completely with 10-5 M shikonin isovalerate. The photoreduction of DCPIP through photosystem II was only slightly inhibited. Photosystem I from durohydroquinone to methyl viologen was not affected using 10-6 M shikonin isovalerate. The same concentration caused 49% inhibition of cyclic photophosphorylation. These results suggest that shikonin isovalerate inhibits photosynthetic electron flow at the plastoquinone pool.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Anabaena variabilis ; Photobleaching ; Photoinhibition ; Photosystem II ; Singlet molecular oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The findings presented in this paper support the suggestion that in the cyanobacterium Anabaena variabilis photobleaching is the result of an increased intracellular level of singlet molecular oxygen, whereas photoinhibition is controlled by a different molecular mechanism. Photobleaching of Anabaena trichomes can be prevented effectively by gassing with argon, nitrogen and carbon dioxide as well as by treatment with the 1O2 quenchers sodium azide and crocetin, and finally, with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). On the other hand, photodynamically active compounds, capable of 1O2 generation, increase photobleaching drastically. Thus, photobleaching is probably caused by singlet molecular oxygen. Photoinhibition studied with the aid of the fluorescence induction was not prevented by most of the treatments which prevent photobleaching. Therefore, different control mechanisms have to be assumed for this process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Key wordsPhormidium sp. C86 ; Chromatic adaptation ; Phycobilisome core substructure ; Photosystem II ; Allophycocyanin complexes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The marine cyanobacterium Phormidium sp. strain C86 changes the phycobilisome type depending on light quality. Red-light-adapted cells contained hemidiscoidal phycobilisomes with a photosystem II:phycobilisome ratio of 2.2, while green-light-adapted cells exhibited hemiellipsoidal phycobilisomes with a photosystem II:phycobilisome ratio of 4.4, as determined by a combined analysis of freeze-fractured thylakoid membranes and ultrathin sections and by photochemical determinations of photosystems and phycobilisomes. Core complexes of phycobilisomes of red- and green-light-adapted cells were isolated by affinity chromatography and were subsequently separated into two allophycocyanin-containing fractions. The high-molecular-weight fraction, with a sedimentation coefficient of 24 S and a calculated mol. wt. of 860,000, contained complexes of the quaternary structure (αAP 9βAP 8β19.5AP)2· (LCM)2 and tricylindrical shape, previously designated APCM. This fraction was similar in size in red- and green-light-adapted cells; however, differences were detected in the low-molecular-weight allophycocyanin fraction containing the "trimeric" complexes with a sedimentation coefficient of 6 S. As shown by comparison of spectral and stoichiometric data of intact phycobilisomes and isolated core complexes, the amount of the αAPB-containing core complex (αAP 2αAPBβAP 3) · LC 10 was greater in core fractions of green-light phycobilisomes, whereas the amount of the core complexes (αAP 3βAP 3) · LC 10, designated AP · LC 10, was higher in cores of red-light phycobilisomes. Phormidium sp. is the first organism examined that exhibits a new type of complementary chromatic adaptation by altering the composition of the phycobilisome core and the number and composition of peripheral rods and by changing the ratio of photosystem II to phycobilisomes. A model summarizing the structural consequences of the results is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 104 (1975), S. 15-22 
    ISSN: 1432-072X
    Keywords: Phycobiliprotein (λ 671, 618 nm) ; Allophycocyanin B ; Photosystem II ; Cyanobacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A hitherto undescribed red fluorescent phycobiliprotein (maximum emission at ∼ 680 nm), characterized by long wavelength absorption maxima in the visible region at 671 nm (ε=172000 M−1·cm−1 per monomer of mol. wt. 30600) and 618 nm, has been purified to homogeneity from a unicellular cyanobacterium, Synechococcus sp., and from a filamentous cyanobacterium, Anabaena variabilis. The name allophycocyanin B has been proposed for the new protein. A. variabilis allophycocyanin B is characterized by a native molecular weight of 89000 ± 5000 (in 0.05 M phosphate at pH 7.2), an isoelectric point of 5.09, and a subunit molecular weight, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of 15300. The protein contains one phycocyanobilin chromophore per subunit. In common with allophycocyanin from the same organism, allophycocyanin B does not contain either histidine or tryptophan. In other respects, the amino acid compositions of the two proteins are significantly different. Synechococcus sp. (Anacystis nidulans) allophycocyanin B gives two components of 16000 and 17000 mol. wt., of equal staining intensity, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allophycocyanins B from both organisms cross-react with rabbit antisera directed against either Synechococcus sp. or Anabaena sp. allophycocyanin, but not with antisera against the phycocyanins of the same organisms. It is suggested that allophycocyanin B occupies a position between allophycocyanin and chlorophyll a in the energy transfer path from the accessory pigments to species of chlorophyll a with absorption maxima at λ〉670 nm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1017
    Keywords: Key words Lipid-protein interactions ; Photosystem I ; Photosystem II ; Thylakoid membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract  We address the segregation of photosystems I (PSI) and II (PSII) in thylakoid membranes by means of a molecular dynamics method. We assume a two-dimensional (in-plane) problem with PSI and PSII being represented by particles with different values of negative charge. The pair interactions between particles include a screened Coulomb repulsive part and am exponentially decaying attractive part. Our modeling results suggest that the system may have a complicated phase behavior, including a quasi-crystalline phase at low ionic screening, a disordered phase and, in addition, a possible “clotting” agglomerate phase at high screening where the photosystems tend to clot together. The relevance of the observed phenomena to the stacking of thylakoid membranes is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0983
    Keywords: Chloroplast ; Photosystem II ; Chlamydomonas ; Suppression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mutations in two distinct nuclear genes, called NAC 1 and AC-115, of the unicellular green alga Chlamydomonas reinhardtii cause a specific and dramatic reduction in the synthesis of the chloroplast-encoded D2 polypeptide of Photosystem II. The psbD transcript which encodes the D2 protein is present in the mutant strains, but protein pulse-labeling and immunoprecipitation experiments demonstrate that the synthesis of the D2 protein does not occur normally in these cells. These phenotypes are suppressed by an extragenic nuclear suppressor isolated from a pseudorevertant of a nac 1 mutant. This suppressor is neither allele- nor gene-specific in its suppression and is able to overcome the effects of two different mutations in the NAC 1 gene, as well as a mutation in AC-115. The suppressor seems to be specific in its ability to remedy blocks in psbD mRNA translation in the chloroplast. It is not able to restore the translation of another chloroplas-encoded rRNA which is blocked by another nuclear mutation. The suppressor may identify a new nuclear gene specifically involved in the synthesis of the D2 protein in the chloroplast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology B: Biology 13 (1992), S. 323-326 
    ISSN: 1011-1344
    Keywords: Photosystem II ; electron transport. ; hydroxylamine ; manganese ; oxygen-evolving complex
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...