ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Actin  (2)
  • Nature Publishing Group  (1)
  • Rockefeller University Press  (1)
  • American Institute of Physics (AIP)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 2047, doi:10.1038/s41467-017-01848-y.
    Description: Integrin αβ heterodimer cell surface receptors mediate adhesive interactions that provide traction for cell migration. Here, we test whether the integrin, when engaged to an extracellular ligand and the cytoskeleton, adopts a specific orientation dictated by the direction of actin flow on the surface of migrating cells. We insert GFP into the rigid, ligand-binding head of the integrin, model with Rosetta the orientation of GFP and its transition dipole relative to the integrin head, and measure orientation with fluorescence polarization microscopy. Cytoskeleton and ligand-bound integrins orient in the same direction as retrograde actin flow with their cytoskeleton-binding β-subunits tilted by applied force. The measurements demonstrate that intracellular forces can orient cell surface integrins and support a molecular model of integrin activation by cytoskeletal force. Our results place atomic, Å-scale structures of cell surface receptors in the context of functional and cellular, μm-scale measurements.
    Description: Supported by the Lillie Research award from Marine Biological Laboratory and the University of Chicago (C.M.W., T.A.S., S.M., T.T.), NIH 5R13GM085967 grant to the Physiology Course at Marine Biological Laboratory, HHMI Summer Institute at Marine Biological Laboratory (S.M.), NIH CA31798 (T.A.S., P.N., T.I.M.), NIH GM100160 (T.T., S.M.), NIH GM092802 (D.B., N.K.), NIH GM114274 (R.O., S.M.) National Center for Biological Sciences-Tata Institute of Fundamental Research (S.M., J.M.K.), J.C. Bose Fellowship and HFSP Grant RGP0027/2012 (S.M.), NHLBI Division of Intramural Research (C.M.W., V.S.), Swedish Research Council VR 524-2011-891 Fellowship (P.N.), Swedish Society for Medical Research SSMF Fellowship (P.N.), Crafoord Foundation (P.N.).
    Keywords: Actin ; Integrin signalling ; Integrins ; Molecular imaging ; Polarization microscopy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © 2004 Feierbach et al. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. The definitive version was published in Journal of Cell Biology 165 (2004): 697-707, doi:10.1083/jcb.200403090.
    Description: The plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large "polarisome" complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end–binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3{Delta}bud6{Delta}tea1{Delta} triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth.
    Description: This research was supported by National Institutes of Health grant GM R01-GM56836, a research project grant from the American Cancer Society, a Nikon summer fellowship at the Marine Biological Laboratory (Woods Hole, MA) to F. Chang, and a National Institutes of Health postdoctoral fellowship (GM20283) to B. Feierbach.
    Keywords: Actin ; Microtubules ; Cell polarity ; Fission yeast ; formin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...