ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (5)
  • Wiley  (3)
  • OGS  (2)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: A dense network of Very High Resolution seismic profiles along the Gondola Fault Zone (GFZ), in the Adriatic foreland (Italy), reveals the geometry and Middle Pleistocene-Holocene activity of this inherited, E-W, strike-slip fault system. The GFZ is 〉50 km long and includes two parallel fault sets, characterized by subvertical planes displaying a vertical component of motion, associated with two main anticlines. The northern fault set is organized in three branches, whereas the southern one includes two branches. The overall geometry of the GFZ suggests dextral slip. The distribution of the vertical displacement is bell-shaped, suggesting a long-term behavior as a single structure. However, individual branches show different deformation histories, implying that they can slip independently. The vertical slip rates, calculated for late Middle Pleistocene to Holocene intervals, are consistently small within a limited range (0-0.19 mm/a).
    Description: Published
    Description: CNR, P.le Aldo Moro 5, Roma, Italia
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: VHR seismics ; Fault displacement ; Active fault ; Adriatic Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We reply to a comment by Messina et al., who strongly criticized our paper on the San Pio Fault, by showing that in areas of complex geology such as the central Apennines, where the current tectonic setting results from the superposition of different tectonic regimes, the equation: “most visible active fault = major seismogenic fault” can be misleading.
    Description: Published
    Description: 421-423
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismotectonics ; morphotectonics ; active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the UPb age of detrital zircon and the 40Ar39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence. Copyright © 2010 John Wiley & Sons, Ltd.
    Description: Published
    Description: 288-310
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In the northern Apennines, the Palaeozoic basement involved in the Late Oligocene–Middle Miocene nappe stack contains metamorphic units for which hypothetical ages have been assigned on the basis of lithological correlations with the Palaeozoic formations of the Variscan chain in Sardinia. This uncertainty concerning the age poses limitations to reconstructing the Palaeozoic stratigraphy, defining the Alpine and pre-Alpine histories and correlations with other domains of the Variscan chain. We present the U-Pb age of detrital zircon and the 40Ar-39Ar age of metamorphic muscovite for the Calamita Schist and Ortano Porphyroid, two metamorphic units of undetermined Palaeozoic age cropping out in the eastern Elba Island. The radioisotopic data allows us to: (i) define the Early Carboniferous and Middle Ordovician ages for the Calamita Schist and Ortano Porphyroid, respectively, as well as their derivation (flysch deposit and magmatic rocks); (ii) pose some constraints concerning their alpine tectonic and metamorphic histories. These new data generate a more precise reconstruction of the Palaeozoic sequence in the northern Apennines, and they document that the Palaeozoic basement involved in the alpine deformation underwent internal stacking with an inversion of the original sequence.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: northern Apennines ; Palaeozoic basement ; U-Pb zircon ; 40Ar-39Ar muscovite ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-29
    Description: The paper discusses the seismogenic characteristics of NE Italy related to earthquakes with Mw≥5.5, and the geometry of the related sources re-drawn by following the DISS standard procedure. Therefore, this paper represents an update of a previous work which investigated the Prealpine area between the Lessini Mountains and the Italian-Slovenian border, and defined the seismogenic sources potentially responsible for earthquakes with Mw≥6 within the GNDT-2000 project. For inclusion in the DISS, the sources of that previous work have been processed following a 3-step process, which is a routine procedure used each time the parameters of a seismogenic source are taken from published works. The first step was a consistency check of the source dimensions (aspect ratio, from length/width relationships and according to the fault type), of their position and geometry (minimum and maximum depth and dip), and of some seismological parameters of the expected/associated earthquakes (slip, Mw from both Wells and Coppersmith’s and Hanks and Kanamori’s relationships, and seismic moment). All these parameters were verified by using the Fault Studio software. The second step involved the inclusion of seismological information, such as the measured stress drop, to infer slip on the fault plane and rupture area and to compare these parameters with the rupture area hypothesised on the basis of the geological information. The third step of the data processing deals with the analysis of the intermediate size historical seismicity (5.5≤Mw≤6.0) and the possible association with faults belonging to the identified active thrust systems of the eastern Southalpine Chain front or to more internal faults (both thrust and strike-slip faults) not included in the data set of the previous work.
    Description: The present research was developed in the framework of the activities of the project “Damage scenarios in the Veneto-Friuli area” financed by the National Group for the Defence against Earthquakes (GNDT).
    Description: Published
    Description: 301-313
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: partially_open
    Keywords: Seismogenic Sources ; Large Historical earthquakes ; Large Instrumental earthquakes ; North-eastern Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...