ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 3 (2013): 2802, doi:10.1038/srep02802.
    Description: It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ‘deep-sea’ and ‘cold-water’ corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.
    Keywords: Ecosystem ecology ; Biodiversity ; Genetics ; Metabolism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Uttieri, M., Nihongi, A., Hinow, P., Motschman, J., Jiang, H., Alcaraz, M., & Strickler, J. R. (2019). Copepod manipulation of oil droplet size distribution AU uttieri, M nihongi, A hinow, P motschman, J jiang, H alcaraz, M strickler, JR. Scientific Reports, 9, 547 , doi:10.1038/s41598-018-37020-9.
    Description: Oil spills are one of the most dangerous sources of pollution in aquatic ecosystems. Owing to their pivotal position in the food web, pelagic copepods can provide crucial intermediary transferring oil between trophic levels. In this study we show that the calanoid Paracartia grani can actively modify the size-spectrum of oil droplets. Direct manipulation through the movement of the feeding appendages and egestion work in concert, splitting larger droplets (Ø = 16 µm) into smaller ones (Ø = 4–8 µm). The copepod-driven change in droplet size distribution can increase the availability of oil droplets to organisms feeding on smaller particles, sustaining the transfer of petrochemical compounds among different compartments. These results raise the curtain on complex small-scale interactions which can promote the understanding of oil spills fate in aquatic ecosystems.
    Description: This research was made possible by a grant from The Gulf of Mexico Research Initiative. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi: 10.7266/N7H70CV7). MU was sponsored by the MOKA project (Modelling and Observation of zooplanKtonic orgAnisms; ID: RBFR10VF6M) financed by the Italian Ministry of Education, University and Research, and by SZN internal grant. PH was supported by the Simons Foundation grant “Collaboration on Mathematical Biology” (278436). JM was the financed by the Support for Undergraduate Research Fellows (SURF) and the Center for International Education (CIE), University of Wisconsin-Milwaukee. HJ was supported by NSF grant no. OCE-1433979. MA was funded by the Spanish research project TOPCOP (CTM2011–23480, from the Spanish Ministry of Education and Science, and 2009SGR-1283 from the Catalan Government). MU thanks Mark Pottek for the design of the MOKA project cartoon, and UWM for hospitality during a research stay in January 2017 supported by Simons Foundation (grant to PH). The authors have no competing interests. No ethical considerations apply. All symbols provided in Fig. 2 courtesy of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/).
    Keywords: Ecosystem ecology ; Marine biology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...