ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2018
    Description: Many chemical constituents are removed from the ocean by attachment to settling particles, a process referred to as “scavenging.” Radioisotopes of thorium, a highly particle-reactive element, have been used extensively to study scavenging in the ocean. However, this process is complicated by the highly variable chemical composition and concentration of particles in oceanic waters. This thesis focuses on understanding the cycling of thorium as affected by particle concentration and particle composition in the North Atlantic. This objective is addressed using (i) the distributions 228,230,234Th, their radioactive parents, particle composition, and bulk particle concentration, as measured or estimated along the GEOTRACES North Atlantic Transect (GA03) and (ii) a model for the reversible exchange of thorium with particles. Model parameters are either estimated by inversion (chapter 2-4), or prescribed in order to simulate 230Th in a circulation model (chapter 5). The major findings of this thesis follow. In chapters 2 and 3, I find that the rate parameters of the reversible exchange model show systematic variations along GA03. In particular, 𝑘1, the apparent first-order rate "constant" of Th adsorption onto particles, generally presents maxima in the mesopelagic zone and minima below. A positive correlation between 𝑘1 and bulk particle concentration is found, consistent with the notion that the specific rate at which a metal in solution attaches to particles increases with the number of surface sites available for adsorption. In chapter 4, I show that Mn (oxyhydr)oxides and biogenic particles most strongly influence 𝑘1 west of the Mauritanian upwelling, but that biogenic particles dominate 𝑘1 in this region. In chapter 5, I find that dissolved 230Th data are best represented by a model that assumes enhanced values of 𝑘1 near the seafloor. Collectively, my findings suggest that spatial variations in Th radioisotope activities observed in the North Atlantic reflect at least partly variations in the rate at which Th is removed from the water column.
    Description: This work was supported by the US National Science Foundation. Two US NSF grants have supported the research in this thesis (OCE-1232578 and OCE-155644).
    Keywords: Thorium ; Chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2017
    Description: This thesis documents the origin, distribution, and fate of methane and several of its isotopic forms on Earth. Using observational, experimental, and theoretical approaches, I illustrate how the relative abundances of 12CH4, 13CH4, 12CH3D, and 13CH3D record the formation, transport, and breakdown of methane in selected settings. Chapter 2 reports precise determinations of 13CH3D, a “clumped” isotopologue of methane, in samples collected from various settings representing many of the major sources and reservoirs of methane on Earth. The results show that the information encoded by the abundance of 13CH3D enables differentiation of methane generated by microbial, thermogenic, and abiogenic processes. A strong correlation between clumped- and hydrogen-isotope signatures in microbial methane is identified and quantitatively linked to the availability of H2 and the reversibility of microbially-mediated methanogenesis in the environment. Determination of 13CH3D in combination with hydrogen-isotope ratios of methane and water provides a sensitive indicator of the extent of C–H bond equilibration, enables fingerprinting of methane-generating mechanisms, and in some cases, supplies direct constraints for locating the waters from which migrated gases were sourced. Chapter 3 applies this concept to constrain the origin of methane in hydrothermal fluids from sediment-poor vent fields hosted in mafic and ultramafic rocks on slow- and ultraslow-spreading mid-ocean ridges. The data support a hypogene model whereby methane forms abiotically within plutonic rocks of the oceanic crust at temperatures above ca. 300 C during respeciation of magmatic volatiles, and is subsequently extracted during active, convective hydrothermal circulation. Chapter 4 presents the results of culture experiments in which methane is oxidized in the presence of O2 by the bacterium Methylococcus capsulatus strain Bath. The results show that the clumped isotopologue abundances of partially-oxidized methane can be predicted from knowledge of 13C/12C and D/H isotope fractionation factors alone.
    Description: The research activities documented in this thesis were made possible by grants to my advisor from the U.S. National Science Foundation (NSF award EAR-1250394), the National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI, University of Colorado, Boulder, CAN 7 under Cooperative Agreement NNA15BB02A), the Department of Energy (DOE, Small Business Innovation Research program, contract DE-SC0004575), the Alfred P. Sloan Foundation via the Deep Carbon Observatory, and a Shell Graduate Fellowship through the MIT Energy Initiative. I completed the bulk of the work in this thesis while being supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship awarded through the Office of Naval Research of the U.S. Department of Defense. The StanleyW.Watson Fellowship Fund provided support during my first summer term at WHOI.The Charles M. Vest Presidential Fellowship at MIT supported me in the first year of my Ph.D. studies. I received additional support that year through NSF award EAR-1159318 (to S. Ono and T. Bosak) and theWalter & Adel Hohenstein Graduate Fellowship of Phi Kappa Phi. The MIT Earth Resources Laboratory and PAOC Houghton Fund funded my attendance at several conferences.
    Keywords: Methane ; Chemistry ; Isotopes ; Oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1998
    Description: Planktonic protozoan grazers have the potential to significantly affect the chemistry of particle-associated trace metals. This is due both to the importance of protists as consumers of bacterial-sized particles, and to the unique low-pH, enzyme-rich microenvironment of the grazer food vacuole. This thesis examines the role of protozoan grazers in the marine geochemistry of strongly hydrolyzed, particle-reactive trace metals, in particular Th and Fe. A series of tracer experiments was carried out in model systems in order to determine the effect of grazer-mediated transformations on the chemical speciation and partitioning of radioisotopes C9Fe, 234Th, 51Cr) associated with prey cells. Results indicate that protozoan grazers are equally able to mobilize intracellular and extracellular trace metals. In some cases, protozoan regeneration of trace metals appears to lead to the formation of metal-organic complexes. Protozoan grazing may generate colloidal material that can scavenge trace metals and, via aggregation, lead to an increase in the metal/organic carbon ratio of aggregated particles. Model system experiments were also conducted in order to determine the effect of grazers on mineral phases, specifically colloidal iron oxide (ferrihydrite). Several independent techniques were employed, including size fractionation ors9Fe-labeled colloids, competitive ligand exchange, and iron-limited diatoms as "probes" for bioavailable Fe. Experimental evidence strongly suggests that protozoan grazing can affect the surface chemistry and increase the dissolution rate of iron oxide phases through phagotrophic ingestion. In further work on protozoan-mediated dissolution of colloidal Fe oxides, a novel tracer technique was developed based on the synthesis of colloidal ferrihydrite impregnated with 133Ba as an inert tracer. This technique was shown to be a sensitive, quantitative indicator for the extent of ferrihydrite dissolution/alteration by a variety of mechanisms, including photochemical reduction and ligand-mediated dissolution. In field experiments using this technique, grazing by naturally occuring protistan assemblages was shown to significantly enhance the dissolution rate of colloidal ferrihydrite over that in non-grazing controls. Laboratory and field results indicate that, when integrated temporally over the entire euphotic zone, protozoan grazing may equal or exceed photoreduction as a pathway for the dissolution of iron oxides.
    Description: This work was financially supported by a Department of Defense ONR-NDSEG Graduate Fellowship, Office ofNaval Research AASERT Award (N00014-94-1-0711), and the National Science Foundation EGB Program (OCE-9523910).
    Keywords: Protozoa ; Water chemistry ; Trace elements in water ; Marine zooplankton ; Chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2017
    Description: Salt marshes are physically, chemically, and biologically dynamic environments found globally at temperate latitudes. Tidal creeks and marshtop ponds may expand at the expense of productive grass-covered marsh platform. It is therefore important to understand the present magnitude and drivers of production and respiration in these submerged environments in order to evaluate the future role of salt marshes as a carbon sink. This thesis describes new methods to apply the triple oxygen isotope tracer of photosynthetic production in a salt marsh. Additionally, noble gases are applied to constrain air-water exchange processes which affect metabolism tracers. These stable, natural abundance tracers complement traditional techniques for measuring metabolism. In particular, they highlight the potential importance of daytime oxygen sinks besides aerobic respiration, such as rising bubbles. In tidal creeks, increasing nutrients may increase both production and respiration, without any apparent change in the net metabolism. In ponds, daytime production and respiration are also tightly coupled, but there is high background respiration regardless of changes in daytime production. Both tidal creeks and ponds have higher respiration rates and lower production rates than the marsh platform, suggesting that expansion of these submerged environments could limit the ability of salt marshes to sequester carbon.
    Description: Financial support for my doctoral research was provided by the United States Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program, the National Science Foundation under grant OCE-1233678, and the Woods Hole Oceanographic Institution (WHOI) under grants from the WHOI Coastal Ocean Institute, Ocean and Climate Change Institute, and Ocean Life Institute. WHOI Academic Programs Office also provided funding support for research, through the Ocean Ventures Fund, and for my stipend, as graduate research assistantships including an assistantship from the United States Geological Survey administered by WHOI.
    Keywords: Marshes ; Chemistry ; Metabolism ; Knorr (Ship : 1970-) Cruise KN210-04
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...