ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8,168)
  • MDPI Publishing  (6,106)
  • Beilstein-Institut  (2,062)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (8,168)
Collection
Years
Journal
Topic
  • 1
    Publication Date: 2015-08-11
    Description: Lightweighting in the transportation industry is today recognized as one of the most important strategies to improve fuel efficiency and reduce anthropogenic climate-changing, environment-damaging, and human death-causing emissions. However, the structural applications of lightweight alloys are often limited by some inherent deficiencies such as low stiffness, high wear rate and inferior strength. These properties could be effectively enhanced by the addition of stronger and stiffer reinforcements, especially nano-sized particles, into metal matrix to form composites. In most cases three common strengthening mechanisms (load-bearing effect, mismatch of coefficients of thermal expansion, and Orowan strengthening) have been considered to predict the yield strength of metal matrix nanocomposites (MMNCs). This study was aimed at developing a unified model by taking into account the matrix grain size and porosity (which is unavoidable in the materials processing such as casting and powder metallurgy) in the prediction of the yield strength of MMNCs. The Zener pinning effect of grain boundaries by the nano-sized particles has also been integrated. The model was validated using the experimental data of magnesium- and titanium-based nanocomposites containing different types of nano-sized particles (namely, Al2O3, Y2O3, and carbon nanotubes). The predicted results were observed to be in good agreement with the experimental data reported in the literature.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-12
    Description: A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-14
    Description: In this work, the plastic deformation mechanisms responsible for mechanical properties and fracture toughness in  nanotwinned (NT) magnesium is studied by molecular dynamics (MD) simulation. The influence of twin boundary (TBs) spacing and crack position on deformation behaviors are investigated. The microstructure evolution at the crack tip are not exactly the same for the left edge crack (LEC) and the right edge crack (REC) models according to calculations of the energy release rate for dislocation nucleation at the crack tip. The LEC growth initiates in a ductile pattern and then turns into a brittle cleavage. In the REC model, the atomic decohesion occurs at the crack tip to create a new free surface which directly induces a brittle cleavage. A ductile to brittle transition is observed which mainly depends on the competition between dislocation motion and crack growth. This competition mechanism is found to be correlated with the TB spacing. The critical values are 10 nm and 13.5 nm for this transition in LEC and REC models, respectively. Essentially, the dislocation densities affected by the TB spacing play a crucial role in the ductile to brittle transition.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-14
    Description: Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-04
    Description: Bone substitute materials have witnessed tremendous development over the past decades and autogenous bone may still be considered the gold standard for many clinicians and clinical approaches in order to rebuild and restore bone defects. However, a plethora of novel xenogenic and synthetic bone substitute materials have been introduced in recent years in the field of bone regeneration. As the development of bone is actually a calcification process within a collagen fiber arrangement, the use of scaffolds in the formation of fibers may offer some advantages, along with additional handling characteristics. This review focuses on material characteristics and degradation behavior of electrospun biodegradable polyester scaffolds. Furthermore, we concentrated on the preclinical in vivo performance with regard to bone regeneration in preclinical studies. The major findings are as follows: Scaffold composition and architecture determine its biological behavior and degradation characteristics; The incorporation of inorganic substances and/or organic substances within composite scaffolds enhances new bone formation; L-poly(lactic acid) and poly(lactic-co-glycolic acid) composite scaffolds, especially when combined with basic substances like hydroxyapatite, tricalcium phosphate or demineralized bone powder, seem not to induce inflammatory tissue reactions in vivo.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-04
    Description: Semi-conducting poly(n-methylaniline) (PNMA)-coated poly(methyl methacrylate) (PMMA) composite nanoparticles were synthesized using cross-linked and grafted PMMA particles as a core, and then, the PNMA shell was coated via chemical oxidative polymerization on the surface of modified PMMA nanoparticles. Their electroresponsive electrorheological characteristics when dispersed in silicone were confirmed under applied electric fields using a rotational rheometer, focusing on their viscoelastic response. Using a frequency sweep test, the frequency dependence of both the storage and loss moduli was confirmed to increase upon increasing the electric field, with a stable plateau regime over the entire angular frequency range.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-08
    Description: three-dimensional integrated circuit (3D-IC) structure with a significant scale mismatch causes difficulty in analytic model construction. This paper proposes a simulation technique to introduce an equivalent material composed of microbumps and their surrounding wafer level underfill (WLUF). The mechanical properties of this equivalent material, including Young’s modulus (E), Poisson’s ratio, shear modulus, and coefficient of thermal expansion (CTE), are directly obtained by applying either a tensile load or a constant displacement, and by increasing the temperature during simulations, respectively. Analytic results indicate that at least eight microbumps at the outermost region of the chip stacking structure need to be considered as an accurate stress/strain contour in the concerned region. In addition, a factorial experimental design with analysis of variance is proposed to optimize chip stacking structure reliability with four factors: chip thickness, substrate thickness, CTE, and E-value. Analytic results show that the most significant factor is CTE of WLUF. This factor affects microbump reliability and structural warpage under a temperature cycling load and high-temperature bonding process. WLUF with low CTE and high E-value are recommended to enhance the assembly reliability of the 3D-IC architecture.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-08
    Description: Nanoporous metals (NPMs) have proven to be all-round candidates in versatile and diverse applications. In this decade, interest has grown in the fabrication, characterization and applications of these intriguing materials. Most existing reviews focus on the experimental and theoretical works rather than the numerical simulation. Actually, with numerous experiments and theory analysis, studies based on computer simulation, which may model complex microstructure in more realistic ways, play a key role in understanding and predicting the behaviors of NPMs. In this review, we present a comprehensive overview of the computer simulations of NPMs, which are prepared through chemical dealloying. Firstly, we summarize the various simulation approaches to preparation, processing, and the basic physical and chemical properties of NPMs. In this part, the emphasis is attached to works involving dealloying, coarsening and mechanical properties. Then, we conclude with the latest progress as well as the future challenges in simulation studies. We believe that highlighting the importance of simulations will help to better understand the properties of novel materials and help with new scientific research on these materials.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-20
    Description: Three isostructural metal-organic frameworks, (MOFs), [Fe(OH)(1,4-NDC)] (1), [Al(OH)(1,4-NDC)] (2), and [In(OH)(1,4-NDC)] (3) have been synthesized hydrothermally by using 1,4-naphthalene dicarboxylate (1,4-NDC) as a linker. The MOFs were characterized using various techniques and further used as precursor materials for the synthesis of metal/metal oxide nanoparticles inserted in a carbon matrix through a simple thermal conversion method. The newly synthesized carbon materials were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy analysis, powder X-ray diffraction and BET analysis. The results showed that the MOF-derived carbon composite materials maintained the morphology of the original MOF upon carbonization, and confirmed the insertion of metal/metal oxide particles in the carbon matrix.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-20
    Description: In this research, monocrystalline gallium oxide (Ga2O3) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga2O3 nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga2O3 nanobelt, indicating the existence of capacitive elements in the Pt/Ga2O3/Pt structure.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...