ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • International Union of Crystallography (IUCr)
  • 2010-2014  (32)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2014-04-08
    Description: Human carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O) in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type) of a variant of CA II in which His64 is replaced with Ala (H64A CA II) can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole) have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations) the activity of H64A CA II.
    Keywords: human carbonic anhydraseH64Aactivity enhancementrescueactivationimidazole
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-08
    Description: Phosphatases function in the production, transport and recycling of inorganic phosphorus, which is crucial for cellular metabolism and bioenergetics, as well as in bacterial killing, since they are able to generate reactive oxygen species via Fenton chemistry. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1), a glycoprotein plant purple acid phosphatase (PAP) from yellow lupin seeds, contains a bimetallic Fe–Mn catalytic site which is most active at acidic pH. Unlike other plant PAPs, PPD1 cleaves the pyrophosphate bond in diphosphonucleotides and the phosphodiester bond in various phosphodiesters. The homohexameric organization of PPD1, as revealed by a 1.65 Å resolution crystal structure and confirmed by solution X-ray scattering, is unique among plant PAPs, for which only homodimers have previously been reported. A phosphate anion is bound in a bidentate fashion at the active site, bridging the Fe and Mn atoms in a binding mode similar to that previously reported for sweet potato PAP, which suggests that common features occur in their catalytic mechanisms. The N-terminal domain of PPD1 has an unexpected and unique fibronectin type III-like fold that is absent in other plant PAPs. Here, the in vitro DNA-cleavage activity of PPD1 is demonstrated and it is proposed that the fibronectin III-like domain, which `overhangs' the active site, is involved in DNA selectivity, binding and activation. The degradation of DNA by PPD1 implies a role for PPD1 in plant growth and repair and in pathogen defence.
    Keywords: purple acid phosphatasediphosphonucleotide phosphatasephosphodiesterasePPD1bimetallic Fe–Mnfibronectin type III domaincrystal structureSAXS
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-08
    Description: Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM) hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate and is able to overcome the hydration tendency of the reference drug.
    Keywords: cocrystalhydratemelt crystallizationpiperazinepowder X-ray diffractionstructure determination from powder data (SDPD)
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-08
    Description: Crystal structure determinations of biological macromolecules are limited by the availability of sufficiently sized crystals and by the fact that crystal quality deteriorates during data collection owing to radiation damage. Exploiting a micrometre-sized X-ray beam, high-precision diffractometry and shutterless data acquisition with a pixel-array detector, a strategy for collecting data from many micrometre-sized crystals presented to an X-ray beam in a vitrified suspension is demonstrated. By combining diffraction data from 80 Trypanosoma brucei procathepsin B crystals with an average volume of 9 µm3, a complete data set to 3.0 Å resolution has been assembled. The data allowed the refinement of a structural model that is consistent with that previously obtained using free-electron laser radiation, providing mutual validation. Further improvements of the serial synchrotron crystallography technique and its combination with serial femtosecond crystallography are discussed that may allow the determination of high-resolution structures of micrometre-sized crystals.
    Keywords: protein microcrystallographyserial crystallographyin vivo grown microcrystals
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-08
    Description: X-ray diffraction patterns from two-dimensional (2-D) protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL) are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5 Å resolution for two different 2-D protein crystal samples each less than 10 nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.
    Keywords: two-dimensional protein crystalfemtosecond crystallographysingle layer X-ray diffractionmembrane protein
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-04-08
    Keywords: biological crystallographyeditorialIUCrJ
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-04-08
    Keywords: protein microcrystallographyserial crystallographyin vivo-grown microcrystals
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-08
    Description: The harmonic model of atomic nuclear motions is usually enough for multipole modelling of high-resolution X-ray diffraction data; however, in some molecular crystals, such as 1-(2′-aminophenyl)-2-methyl-4-nitro-1H-imidazole [Paul, Kubicki, Jelsch et al. (2011). Acta Cryst. B67, 365–378], it may not be sufficient for a correct description of the charge-density distribution. Multipole refinement using harmonic atom vibrations does not lead to the best electron density model in this case and the so-called `shashlik-like' pattern of positive and negative residual electron density peaks is observed in the vicinity of some atoms. This slight disorder, which cannot be modelled by split atoms, was solved using third-order anharmonic nuclear motion (ANM) parameters. Multipole refinement of the experimental high-resolution X-ray diffraction data of 1-(2′-aminophenyl)-2-methyl-4-nitro-1H-imidazole at three different temperatures (10, 35 and 70 K) and a series of powder diffraction experiments (20 ≤ T ≤ 300 K) were performed to relate this anharmonicity observed for several light atoms (N atoms of amino and nitro groups, and O atoms of nitro groups) to an isomorphic phase transition reflected by a change in the b cell parameter around 65 K. The observed disorder may result from the coexistence of domains of two phases over a large temperature range, as shown by low-temperature powder diffraction.
    Keywords: anharmonicityisomorphic phase transitionexperimental charge densityX-ray closed-circuit helium cryostatHansen–Coppens modelmultiple-temperature powder diffraction
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-08
    Description: The partitioning of space with Hirshfeld surfaces enables the analysis of fingerprint molecular interactions in crystalline environments. This study uses the decomposition of the crystal contact surface between pairs of interacting chemical species to derive an enrichment ratio. This quantity enables the analysis of the propensity of chemical species to form intermolecular interactions with themselves and other species. The enrichment ratio is obtained by comparing the actual contacts in the crystal with those computed as if all types of contacts had the same probability to form. The enrichments and contact tendencies were analyzed in several families of compounds, based on chemical composition and aromatic character. As expected, the polar contacts of the type H...N, H...O and H...S, which are generally hydrogen bonds, show enrichment values larger than unity. O...O and N...N contacts are impoverished while H...H interactions display enrichment ratios which are generally close to unity or slightly lower. In aromatic compounds, C...C contacts can display large enrichment ratios due to extensive π...π stacking in the crystal packings of heterocyclic compounds. C...C contacts are, however, less enriched in pure (C,H) hydrocarbons as π...π stacking is not so favourable from the electrostatic point of view compared with heterocycles. C...H contacts are favoured in (C,H) aromatics, but these interactions occur less in compounds containing O, N or S as some H atoms are then involved in hydrogen bonds. The study also highlights the fact that hydrogen is a prefered interaction partner for fluorine.
    Keywords: enrichment ratioHirshfeld surface analysiscrystal packingfingerprint plots
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Keywords: Editorialchemical crystallographycrystal engineering
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: The crystallographic structure solution of nucleotides and nucleotide complexes is now commonplace. The resulting electron-density maps are often poorer than for proteins, and as a result interpretation in terms of an atomic model can require significant effort, particularly in the case of large structures. While model building can be performed automatically, as with proteins, the process is time-consuming, taking minutes to days depending on the software and the size of the structure. A method is presented for the automatic building of nucleotide chains into electron density which is fast enough to be used in interactive model-building software, with extended chain fragments built around the current view position in a fraction of a second. The speed of the method arises from the determination of the `fingerprint' of the sugar and phosphate groups in terms of conserved high-density and low-density features, coupled with a highly efficient scoring algorithm. Use cases include the rapid evaluation of an initial electron-density map, addition of nucleotide fragments to prebuilt protein structures, and in favourable cases the completion of the structure while automated model-building software is still running. The method has been incorporated into the Coot software package.
    Keywords: nucleic acid chain tracingCoot
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-11-12
    Description: Accurate structural models of reaction centres in zeolite catalysts are a prerequisite for mechanistic studies and further improvements to the catalytic performance. The Rietveld/maximum entropy method is applied to synchrotron powder X-ray diffraction data on fully dehydrated CHA-type zeolites with and without loading of catalytically active Cu2+ for the selective catalytic reduction of NOx with NH3. The method identifies the known Cu2+ sites in the six-membered ring and a not previously observed site in the eight-membered ring. The sum of the refined Cu occupancies for these two sites matches the chemical analysis and thus all the Cu is accounted for. It is furthermore shown that approximately 80% of the Cu2+ is located in the new 8-ring site for an industrially relevant CHA zeolite with Si/Al = 15.5 and Cu/Al = 0.45. Density functional theory calculations are used to corroborate the positions and identity of the two Cu sites, leading to the most complete structural description of dehydrated silicoaluminate CHA loaded with catalytically active Cu2+ cations.
    Keywords: CHA zeolitescatalytic activitylocation of Cu2+synchrotron powder X-ray diffractionRietveld/maximum entropy method
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-11-12
    Description: Crystallographic auto-indexing algorithms provide crystal orientations and unit-cell parameters and assign Miller indices based on the geometric relations between the Bragg peaks observed in diffraction patterns. However, if the Bravais symmetry is higher than the space-group symmetry, there will be multiple indexing options that are geometrically equivalent, and hence many ways to merge diffraction intensities from protein nanocrystals. Structure factor magnitudes from full reflections are required to resolve this ambiguity but only partial reflections are available from each XFEL shot, which must be merged to obtain full reflections from these `stills'. To resolve this chicken-and-egg problem, an expectation maximization algorithm is described that iteratively constructs a model from the intensities recorded in the diffraction patterns as the indexing ambiguity is being resolved. The reconstructed model is then used to guide the resolution of the indexing ambiguity as feedback for the next iteration. Using both simulated and experimental data collected at an X-ray laser for photosystem I in the P63 space group (which supports a merohedral twinning indexing ambiguity), the method is validated.
    Keywords: indexing ambiguityserial femtosecond crystallography (SFX)XFELsprotein crystallographyexpectation maximization algorithm
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-11-12
    Description: The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL) is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron–electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12 keV and a pulse width of 40 fs considering a flux of 1012 photons pulse−1 (focusing on a spot size of ∼1 µm). This flux corresponds to a fluence ranging between 0.8 and 2.4 mJ µm−2. The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6 mJ µm−2.
    Keywords: femtosecond pulseX-ray diffractionpolarizabilityelectron densityrate equations
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-11-12
    Description: Melting of native tapioca starch granules in aqueous pastes upon heating is observed in situ using simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) and solution viscometry. Correlated structure and viscosity changes suggest closely associated amylose and amylopectin chains in the semicrystalline layers, and the release of amylose chains for enhanced solution viscosity occurs largely after melting of the semicrystalline structure. Before melting, WAXS results reveal mixed crystals of A- and B-types (∼4:1 by weight), whereas SAXS results indicate that the semicrystalline layers are composed of lamellar blocklets of ca 43 nm domain size, with polydisperse crystalline (≃7.5 nm) and amorphous (≃1.1 nm) layers alternatively assembled into a lamellar spacing of ≃8.6 nm with 20% polydispersity. Upon melting, the semicrystalline lamellae disintegrate into disperse and molten amylopectin nanoclusters with dissolved and partially untangled amylose chains in the aqueous matrix which leads to increased solution viscosity. During subsequent cooling, gelation starts at around 347 K; successively increased solution viscosity coincides with the development of nanocluster aggregation to a fractal dimension ≃2.3 at 303 K, signifying increasing intercluster association through collapsed amylose chains owing to decreased solvency of the aqueous medium with decreasing temperature.
    Keywords: tapioca starch granulesgelatinizationgelationSAXS/WAXSviscosity
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-11-12
    Description: Molecular self-assembly of nylon-12 rods in self-organized nanoporous alumina cylinders with two different diameters (65 and 300 nm) is studied with transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) in symmetrical reflection mode. In a rod with a 300 nm diameter, the tendency of the hydrogen-bonding direction of a γ-form crystal parallel to the long axis of the rod is not clear because of weak two-dimensional confinement. In a rod with a diameter of 65 nm, the tendency of the hydrogen-bonding direction of a γ-form crystal parallel to the long axis of the rod is more distinct because of strong two-dimensional confinement. For the first time, selected-area electron diffraction (SAED) is applied in a transmission electron microscope to a polymer nanorod in order to determine the hydrogen-bond sheet and lamellar orientations. Results of TEM–SAED and WAXD showed that the crystals within the rod possess the γ-form of nylon-12 and that the b axis (stem axis) of the γ-form crystals is perpendicular to the long axis of the rod. These results revealed that only lamellae with 〈h0l〉 directions are able to grow inside the nanopores and the growth of lamellae with 〈hkl〉 (k ≠ 0) directions is stopped owing to impingements against the cylinder walls. The dominant crystal growth direction of the 65 nm rod in stronger two-dimensional confinement is in between the [−201] and [001] directions due to the development of a hydrogen-bonded sheet restricted along the long axis of the rod.
    Keywords: molecular self-assemblynanorodsselected-area electron diffractioncylindrical confinement
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.
    Keywords: bacteriophagesgenome deliveryfusion proteinsRNA-dependent RNA polymerasesviral proteasesviral receptorsviruses
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: This article reviews efforts in accurate experimental charge-density studies with relevance to medicinal chemistry. Initially, classical charge-density studies that measure electron density distribution via least-squares refinement of aspherical-atom population parameters are summarized. Next, interaction density is discussed as an idealized situation resembling drug–receptor interactions. Scattering-factor databases play an increasing role in charge-density research, and they can be applied both to small-molecule and macromolecular structures in refinement and analysis; software development facilitates their use. Therefore combining both of these complementary branches of X-ray crystallography is recommended, and examples are given where such a combination already proved useful. On the side of the experiment, new pixel detectors are allowing rapid measurements, thereby enabling both high-throughput small-molecule studies and macromolecular structure determination to higher resolutions. Currently, the most ambitious studies compute intermolecular interaction energies of drug–receptor complexes, and it is recommended that future studies benefit from recent method developments. Selected new developments in theoretical charge-density studies are discussed with emphasis on its symbiotic relation to crystallography.
    Keywords: charge-density researchmedicinal chemistrydrug designinvariomHansen–Coppens multipole modelquantum theory of atoms in molecules
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-11-12
    Description: Metastable phases are often used to design materials with outstanding properties, which cannot be achieved with thermodynamically stable compounds. In many cases, the metastable phases are employed as precursors for controlled formation of nanocomposites. This contribution shows how the microstructure of crystalline metastable phases and the formation of nanocomposites can be concluded from X-ray diffraction experiments by taking advantage of the high sensitivity of X-ray diffraction to macroscopic and microscopic lattice deformations and to the dependence of the lattice deformations on the crystallographic direction. The lattice deformations were determined from the positions and from the widths of the diffraction lines, the dependence of the lattice deformations on the crystallographic direction from the anisotropy of the line shift and the line broadening. As an example of the metastable system, the supersaturated solid solution of titanium nitride and aluminium nitride was investigated, which was prepared in the form of thin films by using cathodic arc evaporation of titanium and aluminium in a nitrogen atmosphere. The microstructure of the (Ti,Al)N samples under study was tailored by modifying the [Al]/[Ti] ratio in the thin films and the surface mobility of the deposited species.
    Keywords: metastable thin filmsmicrostructureX-ray diffraction
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-11-12
    Description: Human transthyretin has an intrinsic tendency to form amyloid fibrils and is heavily implicated in senile systemic amyloidosis. Here, detailed neutron structural studies of perdeuterated transthyretin are described. The analyses, which fully exploit the enhanced visibility of isotopically replaced hydrogen atoms, yield new information on the stability of the protein and the possible mechanisms of amyloid formation. Residue Ser117 may play a pivotal role in that a single water molecule is closely associated with the γ-hydrogen atoms in one of the binding pockets, and could be important in determining which of the two sites is available to the substrate. The hydrogen-bond network at the monomer–monomer interface is more extensive than that at the dimer–dimer interface. Additionally, the edge strands of the primary dimer are seen to be favourable for continuation of the β-sheet and the formation of an extended cross-β structure through sequential dimer couplings. It is argued that the precursor to fibril formation is the dimeric form of the protein.
    Keywords: transthyretinamyloid assemblyneutron crystallographydeuteration
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-11-12
    Description: The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.
    Keywords: X-ray diffractionMarsextraterrestrial mineralogyCuriosity rover
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-11-12
    Description: Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.
    Keywords: SAXSWAXSSANScomplementary techniquessample environment
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.
    Keywords: biological membraneslipidsbilayerslipid–protein assemblieshigh-pressure studies
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.
    Keywords: nanocrystalline materialsplasmonicsshape prediction models
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-11-12
    Description: Membrane fusion is essential for human health, playing a vital role in processes as diverse as neurotransmission and blood glucose control. Two protein families are key: (1) the Sec1p/Munc18 (SM) and (2) the soluble N-ethylmaleimide-sensitive attachment protein receptor (SNARE) proteins. Whilst the essential nature of these proteins is irrefutable, their exact regulatory roles in membrane fusion remain controversial. In particular, whether SM proteins promote and/or inhibit the SNARE-complex formation required for membrane fusion is not resolved. Crystal structures of SM proteins alone and in complex with their cognate SNARE proteins have provided some insight, however, these structures lack the transmembrane spanning regions of the SNARE proteins and may not accurately reflect the native state. Here, we review the literature surrounding the regulatory role of mammalian Munc18 SM proteins required for exocytosis in eukaryotes. Our analysis suggests that the conflicting roles reported for these SM proteins may reflect differences in experimental design. SNARE proteins appear to require C-terminal immobilization or anchoring, for example through a transmembrane domain, to form a functional fusion complex in the presence of Munc18 proteins.
    Keywords: SM proteinsSNARE proteinssyntaxinMunc18membrane trafficking
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: The biological solution small-angle X-ray scattering (BioSAXS) field has undergone tremendous development over recent decades. This means that increasingly complex biological questions can be addressed by the method. An intricate synergy between advances in hardware and software development, data collection and evaluation strategies and implementations that readily allow integration with complementary techniques result in significant results and a rapidly growing user community with ever increasing ambitions. Here, a review of these developments, by including a selection of novel BioSAXS methodologies and recent results, is given.
    Keywords: biological solution small-angle X-ray scattering (BioSAXS)synchrotron radiationbeamlinesstructural complexitybiostructural research
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: The study of single-crystal diffuse scattering (SCDS) goes back almost to the beginnings of X-ray crystallography. Because SCDS arises from two-body correlations, it contains information about local (short-range) ordering in the sample, information which is often crucial in the attempt to relate structure to function. This review discusses the state of the field, including detectors and data collection and the modelling of SCDS using Monte Carlo and ab initio techniques. High-quality, three-dimensional volumes of SCDS data can now be collected at synchrotron light sources, allowing ever more detailed and quantitative analyses to be undertaken, and opening the way to approaches such as three-dimensional pair distribution function studies (3D-PDF) and automated refinement of a disorder model, powerful techniques that require large volumes of low-noise data.
    Keywords: single-crystal diffuse scatteringdisordersynchrotron light sources
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: The smart specialization declared in the European program Horizon 2020, and the increasing cooperation between research and development found in companies and researchers at universities and research institutions have created a new paradigm where many calls for proposals require participation and funding from public and private entities. This has created a unique opportunity for large-scale facilities, such as synchrotron research laboratories, to participate in and support applied research programs. Scientific staff at synchrotron facilities have developed many advanced tools that make optimal use of the characteristics of the light generated by the storage ring. These tools have been exceptionally valuable for materials characterization including X-ray absorption spectroscopy, diffraction, tomography and scattering, and have been key in solving many research and development issues. Progress in optics and detectors, as well as a large effort put into the improvement of data analysis codes, have resulted in the development of reliable and reproducible procedures for materials characterization. Research with photons has contributed to the development of a wide variety of products such as plastics, cosmetics, chemicals, building materials, packaging materials and pharma. In this review, a few examples are highlighted of successful cooperation leading to solutions of a variety of industrial technological problems which have been exploited by industry including lessons learned from the Science Link project, supported by the European Commission, as a new approach to increase the number of commercial users at large-scale research infrastructures.
    Keywords: X-ray techniquesindustryinnovation
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-11-12
    Description: Iron(II) and 2-oxoglutarate (2OG)-dependent dioxygenases involved in histone and DNA/RNA demethylation convert the cosubstrate 2OG and oxygen to succinate and carbon dioxide, resulting in hydroxylation of the methyl group of the substrates and subsequent demethylation. Recent evidence has shown that these 2OG dioxygenases play vital roles in a variety of biological processes, including transcriptional regulation and gene expression. In this review, the structure and function of these dioxygenases in histone and nucleic acid demethylation will be discussed. Given the important roles of these 2OG dioxygenases, detailed analysis and comparison of the 2OG dioxygenases will guide the design of target-specific small-molecule chemical probes and inhibitors.
    Keywords: dioxygenaseshistone demethylationDNA/RNA demethylationN6-methyladenosineALKBH5
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.
    Keywords: EXAFSXANESoxide nanomaterialsnanocrystalline materials
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.
    Keywords: high pressuremultiferroicsmaterials science
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2014-11-12
    Description: Metal–organic frameworks (MOFs) are one of the most intensely studied material types in recent times. Their networks, resulting from the formation of strong bonds between inorganic and organic building units, offer unparalled chemical diversity and pore environments of growing complexity. Therefore, advances in single-crystal X-ray diffraction equipment and techniques are required to characterize materials with increasingly larger surface areas, and more complex linkers. In addition, whilst structure solution from powder diffraction data is possible, the area is much less populated and we detail the current efforts going on here. We also review the growing number of reports on diffraction under non-ambient conditions, including the response of MOF structures to very high pressures. Such experiments are important due to the expected presence of stresses in proposed applications of MOFs – evidence suggesting rich and complex behaviour. Given the entwined and inseparable nature of their structure, properties and applications, it is essential that the field of structural elucidation is able to continue growing and advancing, so as not to provide a rate-limiting step on characterization of their properties and incorporation into devices and applications. This review has been prepared with this in mind.
    Keywords: MOFsnon-ambient crystallographycrystal growth
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...