ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8,583)
  • Institute of Physics  (8,583)
  • Energy, Environment Protection, Nuclear Power Engineering  (8,583)
Collection
  • Articles  (8,583)
Years
Journal
  • 1
    Publication Date: 2021-10-29
    Description: Agro-food systems require nutrient input from several sources to provide food products and food-related services. Many of the nutrients are lost to the environment during supply chains, potentially threatening human and ecosystem health. Countries therefore need to reduce their nutrient/nitrogen footprints. These footprints are importantly affected by links between sectors. However, existing assessments omit the links between sectors, especially between the agriculture, manufacturing, and energy sectors. We propose a novel approach called the nutrient-extended input–output (NutrIO) method to determine the nutrient footprint as a sum of direct and indirect inputs throughout the supply chains from different sources of nutrients. The NutrIO method is based on a nutrient-based material flow analysis linked to economic transactions. Applying this method, we estimated the nitrogen footprint of Japan in 2011 at 21.8 kg-N capita−1yr−1: 9.7 kg-N capita−1 yr−1 sourced from new nitrogen for agriculture and fisheries, 7.0 kg-N capita−1 yr−1 from recycled nitrogen as organic fertilizers, and 5.1 kg-N capita−1 yr−1 from industrial nitrogen for chemical industries other than fertilizers. A further annexed 55.4 kg-N capita−1 yr−1 of unintended nitrogen input was sourced from fossil fuels for energy production. The nitrogen intensity of the wheat and barley cultivation sector, at 1.50 kg-N per thousand Japanese yen (JPY) production, was much higher than that of the 0.12 kg-N per thousand JPY production for the rice cultivation sector. Industrial nitrogen accounted for 2%–7% of the nitrogen footprint of each major food-related sector. The NutrIO nitrogen footprint sourced from new nitrogen for agriculture and fisheries, at 8.6 kg-N capita−1 yr−1 for domestic final products, is comparable to the food nitrogen footprint calculated by other methods, at 8.5–10.5 kg-N capita−1 yr−1. The NutrIO method provides quantitative insights for all stakeholders of food consumption and production to improve the nutrient use efficiencies of agro-food supply chains.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-29
    Description: While drinking water is known to create significant health risk in arsenic hazard areas, the role of exposure to arsenic through food intake is less well understood, including the impact of food trade. Using the best available datasets on crop production, irrigation, groundwater arsenic hazard, and international crop trade flows, we estimate that globally 17.2% of irrigated harvested area (or 45.2 million hectares) of 42 main crops are grown in arsenic hazard areas, contributing 19.7% of total irrigated crop production, or 418 million metric tons (MMT) per year of these crops by mass. Two-thirds of this area is dedicated to the major staple crops of rice, wheat, and maize (RWM) and produces 158 MMT per year of RWM, which is 8.0% of the total RWM production and 18% of irrigated production. More than 25% of RWM consumed in the South Asian countries of India, Pakistan, and Bangladesh, where both arsenic hazard and degree of groundwater irrigation are high, originate from arsenic hazard areas. Exposure to arsenic risk from crops also comes from international trade, with 10.6% of rice, 2.4% of wheat, and 4.1% of maize trade flows coming from production in hazard areas. Trade plays a critical role in redistributing risk, with the greatest exposure risk borne by countries with a high dependence on food imports, particularly in the Middle East and small island nations for which all arsenic risk in crops is imported. Intensifying climate variability and population growth may increase reliance on groundwater irrigation, including in arsenic hazard areas. Results show that RWM harvested area could increase by 54.1 million hectares (179% increase over current risk area), predominantly in South and Southeast Asia. This calls for the need to better understand the relative risk of arsenic exposure through food intake, considering the influence of growing trade and increased groundwater reliance for crop production.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-29
    Description: Plant pest invasions cost billions of Euros each year in Europe. Prediction of likely places of pest introduction could greatly help focus efforts on prevention and control and thus reduce societal costs of pest invasions. Here, we test whether generic data-driven risk maps of pest introduction, valid for multiple species and produced by machine learning methods, could supplement the costly species-specific risk analyses currently conducted by governmental agencies. An elastic-net algorithm was trained on a dataset covering 243 invasive species to map risk of new introductions in Europe as a function of climate, soils, water, and anthropogenic factors. Results revealed that the BeNeLux states, Northern Italy, the Northern Balkans, and the United Kingdom, and areas around container ports such as Antwerp, London, Rijeka, and Saint Petersburg were at higher risk of introductions. Our analysis shows that machine learning can produce hotspot maps for pest introductions with a high predictive accuracy, but that systematically collected data on species’ presences and absences are required to further validate and improve these maps.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-29
    Description: The Aral Sea desiccation is one of the worst aquatic ecological disasters of the last century, important for understanding the worldwide trends to degradation of arid lakes under water use and climate change. Formerly the fourth largest lake worldwide, the Aral Sea has lost ∼90% of its water since the early 1960s due to irrigation in its drainage basin. Our survey on the seasonal thermal and mixing regime in Chernyshev—a semi-isolated hypersaline part of the Aral Sea—revealed a newly formed two-layered structure with strong gradients of salinity and water transparency at mid-depths. As a result, the Chernyshev effectively accumulates solar energy, creating a temperature maximum at the water depth of ∼5 m with temperatures up to 37 °C. Herewith, this part of the Aral Sea has evolved to an unprecedently large (∼80 km2) heliothermal lake akin to artificial solar ponds used for ‘green energy’ production. The newly formed heliothermal lake, with transparent and freshened layer on top of the hypersaline and nutrient-rich deep water, acts as a solar energy trap and facilitates intense biogeochemical processes. The latter reveal themselves in practically 100% opacity of the deep layer to the solar light, permanent deep anoxia, and growing methane concentrations. The recent emergence of the Chernyshev as a heliothermal lake provides an opportunity for tracing the biogeochemical and ecological response of aquatic ecosystems to suddenly changed environmental conditions.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-29
    Description: This study conducted a systematic literature review of the technical aspects and methodological choices in life cycle assessment (LCA) studies of using hydrogen for road transport. More than 70 scientific papers published during 2000–2021 were reviewed, in which more than 350 case studies of use of hydrogen in the automotive sector were found. Only some studies used hybrid LCA and energetic input-output LCA, whereas most studies addressed attributional process-based LCA. A categorization based on the life cycle scope distinguished case studies that addressed the well-to-tank (WTT), well-to-wheel (WTW), and complete life cycle approaches. Furthermore, based on the hydrogen production process, these case studies were classified into four categories: thermochemical, electrochemical, thermal-electrochemical, and biochemical. Moreover, based on the hydrogen production site, the case studies were classified as centralized, on-site, and on-board. The fuel cell vehicle passenger car was the most commonly used vehicle. The functional unit for the WTT studies was mostly mass or energy, and vehicle distance for the WTW and complete life cycle studies. Global warming potential (GWP) and energy consumption were the most influential categories. Apart from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model and the Intergovernmental Panel on Climate Change for assessing the GWP, the Centrum voor Milieukunde Leiden method was most widely used in other impact categories. Most of the articles under review were comparative LCA studies on different hydrogen pathways and powertrains. The findings provide baseline data not only for large-scale applications, but also for improving the efficiency of hydrogen use in road transport.
    Electronic ISSN: 2516-1083
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics , Technology
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-29
    Description: Cities are at the front line of combating environmental pollution and climate change, thus support from cities is crucial for successful enforcement of environmental policy. To mitigate environmental problems, China introduced at provincial level the Environmental Protection Tax Law in 2018. Yet the resulting economic burden on households in different cities with significantly different affluence levels remains unknown. The extent of the economic impacts is likely to affect cities’ support and public acceptability. This study quantifies the economic burden of urban households from taxation of fine particle pollution (PM2.5) for 200 cities nationwide from a “consumer” perspective, accounting for PM2.5 and precursor emissions along the national supply chain. Calculations are based on a Multi-Regional Input-Output (MRIO) analysis, the official tax calculation method and urban household consumption data from China’s statistical yearbooks. We find that the current taxation method intensifies economic inequality between cities nationally and within each province, with some of the richest cities having lower tax intensities than some of the poorest. This is due to the fact that taxes are collected based on tax rates of producing regions rather than consuming regions, that cities with very different affluence levels within a province bear the same tax rate, and that emission intensities in several less affluent cities are relatively high. If the tax could be levied based on tax rates of each city where the consumer lives, with tax rates determined based on cities’ affluence levels and with tax revenues used to support emission control, inter-city economic inequality could be reduced. Our work provides quantitative evidence to improve the environmental tax and can serve as the knowledge base for coordinated inter-city policy.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-29
    Description: Choosing appropriate spatial priorities for protected areas (PAs) to conserve ecosystem services (ESs) and biodiversity is a challenge for decision-makers under limited land resources, especially when facing uncertain protection consequences or conflicting protection objectives. Attitudes toward risk will influence actions, which will, in turn, impact consequences. To understand how theoretical decision-maker attitudes towards risk impact protection effectiveness for biodiversity and ESs (e.g., water retention, soil retention, flood mitigation, water purification and carbon sequestration) and how this information can be integrated into effective PAs management, we examined Hainan Island as a case study. We used the ordered weighted averaging algorithm to assess the impact of attitude towards risk in PA management. Decision-makers’ attitude towards risk scenarios (from risk-averse and risk-taking) showed higher mean protection effectiveness (2.41–2.85) than existing PAs (2.37), indicating that there is still room for improvement in biodiversity and ESs conservation in existing PAs. In addition, among the seven examined risk scenarios, the higher risk aversion scenario showed the best outcome. In comparison to existing PAs, this scenario improved mean protection effectiveness (20.13%) as well as the protection effectiveness of water retention (24.84%), water purification (11.46%), flood mitigation (8.84%), soil retention (16.63%), carbon sequestration (5.31%), and biodiversity (12.84%). Thus, our research shows that the influence of theoretical decision-makers’ attitudes towards risk could be considered by OWA method which could provide a normative model of what the right choice given theoretical risk attitudes is while selecting priority area for biodiversity and ESs.
    Electronic ISSN: 2515-7620
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-29
    Description: In recent years, Chinese cities have begun to pay attention to their rivers, and a large number of waterfront linear parks have been built in the riverside areas, so that the public can easily enjoy their landscape and entertainment functions. In this study, the visual quality of the waterfront trails and the greenbelt trails in the Waterfront linear Park around the Hunhe river in Shenyang was evaluated the basis of the Scenic Beauty Estimation Method and Semantic Differential Method, and the principal components of the landscape characteristics were extracted and a regression model of the visual quality and the landscape characteristics was established. Results show that the natural feature and the formal feature have a positive influence on the visual quality in waterfront linear parks, and the man-made feature has a negative impact on the visual quality. The six landscape characteristics are Sense of seclusion, ecology, intactness, uniqueness, unity and vitality, which are the main factors which affect the visual quality. This study puts forward improvement measures for the waterfront trails and the greenbelt trails, and the results can be applied to the planning, construction, and management of waterfront linear parks.
    Electronic ISSN: 2515-7620
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-29
    Description: Accurate prediction of the East Asian summer monsoon (EASM) is beneficial to billions of people’s production and lives. Here convolutional neural networks (CNN) and transfer learning are used for predicting the EASM. The results of the constructed CNN regression model show that the prediction of the CNN regression model is highly consistent with the reanalysis dataset, with correlation coefficient of 0.78, which is higher than that of each of the current state-of-the-art dynamic models. The heat map method indicates that the robust precursor signals in the CNN regression model agree well with previous theoretical studies, and can provide the quantitative contribution of different signals for EASM prediction. The CNN regression model can predict the EASM one year ahead with a confidence level above 95%. The above method can not only improve the prediction of the EASM but also help to identify the involved physical predictors.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-29
    Description: Fossil fuel and aerosol emissions have played important roles on climate over the Indian subcontinent over the last century. As the world transitions toward decarbonization in the next few decades, emissions pathways could have major impacts on India’s climate and people. Pathways for future emissions are highly uncertain, particularly at present as countries recover from COVID-19. This paper explores a multimodel ensemble of Earth system models leveraging potential global emissions pathways following COVID-19 and the consequences for India’s summertime (June–July–August–September) climate in the near- and long-term. We investigate specifically scenarios which envisage a fossil-based recovery, a strong renewable-based recovery and a moderate scenario in between the two. We find that near-term climate changes are dominated by natural climate variability, and thus likely independent of the emissions pathway. By 2050, pathway-induced spatial patterns in the seasonally-aggregated precipitation become clearer with a slight drying in the fossil-based scenario and wetting in the strong renewable scenario. Additionally, extreme temperature and precipitation events in India are expected to increase in magnitude and frequency regardless of the emissions scenario, though the spatial patterns of these changes as well as the extent of the change are pathway dependent. This study provides an important discussion on the impacts of emissions recover pathways following COVID-19 on India, a nation which is likely to be particularly susceptible to climate change over the coming decades.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...