ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
  • Meteorologie
  • Copernicus  (2)
  • INGV  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-04
    Description: An analysis of observations from 1948-1998 suggests that the atmosphere in the North Atlantic region does respond to North Atlantic Sea-Surface Temperatures (SSTs) throughout the annual cycle. In the subtropics, high geopotential heights are seen to be a local response to warm SSTs. In winter, the North Atlantic Oscillation responds to a «tripole» pattern in North Atlantic SSTs. In summer, anticyclonicity over the U.K. is seen downstream of warm SST anomalies off Newfoundland and is possibly also related to warm subtropical SSTs. Such responses imply a degree of seasonal predictability and help quantify the strength of natural ocean-atmosphere coupled modes of variability. The average of an ensemble of 10 simulations of the HadAM3 atmospheric model forced with observed SSTs for the same period produces robust ocean-forced responses which agree well with those identifi ed in the observations and with a previous model. The agreement is encouraging as it confi rms the physical signifi cance of the observational results and suggests that the model responds with the correct patterns to SST forcing. In the subtropics, the magnitude of the ensemble mean response is comparable with the observational response. In the extratropics, the magnitude of the model response is about half that of the observations. Although atmospheric internal variability may have affected the observed atmospheric patterns and there are considerations regarding the lack of two-way air-sea interaction with an atmospheric model, it is suggested that the models extratropical response may be too weak. The 10 individual simulations of HadAM3 and 28 50-year periods of the ocean-atmosphere model, HadCM3, display similar results to each other with generally weaker ocean-forced links than observed. Seasonal predictability may, therefore, be too low in HadCM3 and low-frequency coupled modes under-represented. A moderate increase in the extratropics in the sensitivity of surface heat fl uxes to surface temperatures is one possibility for improving these model deficiencies.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: North Atlantic ; predictability ; interaction ; validation ; NAO ; anticyclonicity ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2103430 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-04
    Description: The relationship between Mediterranean precipitation and North Atlantic and European sea level pressure fields has been studied using statistical techniques to investigate the variability within the data. A principal component analysis shows the major winter precipitation variability is described by a see-saw fluctuation between the Western and Eastern Mediterranean. The pressure-precipitation relationships indicate that a highly variable, pressure region situated to the south of Britain dominates this major precipitation pattern. The large-scale pressure fields which facilitate the precipitation patterns have been isolated using a canonical correlation analysis. Although the well-known major pressure centres of action in the North Atlantic are important, pressure changes in the east are found to also control the transport of moisture across the Mediterranean to a large degree, as the presence of a large high over Kazakhstan causes meridonial flow and impedes the passage of moisture across the Mediterranean. The pressure-precipitation relationships are found to be very consistent over multi-decadal,seasonal, monthly and daily time-scales with trajectory analysis confirming many of the features of the average seasonal pressure charts. This steadiness and regularity indicates that the Mediterranean precipitation teleconnection is a robust phenomenon that is affected by large-scale pressure changes to both the east and west.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: Mediterranean ; precipitation ; principal component ; canonical correlation ; trajectory ; 03. Hydrosphere::03.01. General::03.01.99. General or miscellaneous ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1659879 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Journal cover
    Unknown
    Copernicus
    Online: 1.2015 –
    Publisher: Copernicus
    Print ISSN: 2364-3579
    Electronic ISSN: 2364-3587
    Topics: Geosciences , Physics
    Keywords: Ozeanographie ; Klimatologie ; Meteorologie
    Acronym: ASCMO
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...