ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mikrobiologie
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
  • INGV  (9)
  • Nature Publishing Group  (3)
Collection
Keywords
Years
  • 1
    Journal cover
    Unknown
    Nature Publishing Group | ISME (International Society for Microbial Ecology)
    Online: 1.2007 –
    Publisher: Nature Publishing Group , ISME (International Society for Microbial Ecology)
    Corporation: International Society for Microbial Ecology, ISME
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Keywords: Mikrobiologie
    Parallel titles: The ISME Journal
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Journal cover
    Unknown
    Nature Publishing Group | ISME (International Society for Microbial Ecology), PubMed Central
    Online: 1.2007 – (older than 12 months)
    Publisher: Nature Publishing Group , ISME (International Society for Microbial Ecology), PubMed Central
    Corporation: International Society for Microbial Ecology, ISME
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Keywords: Mikrobiologie
    Parallel titles: The ISME Journal
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: open
    Keywords: Geodynamics ; Volcano-seismic correlation ; Seismic and volcanic risk ; Earth rotation and volcano-seismic events ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-04
    Description: In this work we present a 3D Finite Difference numerical method to model the dynamic spontaneous propagation of an earthquake rupture on planar faults in an elastic half-space. We implement the Traction-at-Split-Nodes fault boundary condition for a system of faults, either vertical or oblique, using different constitutive laws. We can adopt both a slip-weakening law to prescribe the traction evolution within the breakdown zone or rate- and state-dependent friction laws, which involve the choice of an evolution relation for the state variable. Our numerical procedure allows the use of oblique and heterogeneous distribution of initial stress and allows the rake rotation. This implies that the two components of slip velocity and total dynamic traction are coupled together to satisfy, in norm, the adopted constitutive law. The simulations presented in this study show that the rupture acceleration to super-shear crack speeds occurs along the direction of the imposed initial stress; the rupture front velocity along the perpendicular direction is slower than that along the pre-stress direction. Depending on the position on the fault plane the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of initial stress and on its distribution on the fault plane. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: earthquake dynamics ; numerical modeling ; friction laws ; slip time history ; rake rotation ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3521621 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-04
    Description: We investigate the effects of non-uniform distribution of constitutive parameters on the dynamic propagation of an earthquake rupture. We use a 2D finite difference numerical method and we assume that the dynamic rupture propagation is governed by a rate- and state-dependent constitutive law. We first discuss the results of several numerical experiments performed with different values of the constitutive parameters a (to account for the direct effect of friction), b (controlling the friction evolution) and L (the characteristic length-scale parameter) to simulate the dynamic rupture propagation on homogeneous faults. Spontaneous dynamic ruptures can be simulated on velocity weakening (a 〈 b) fault patches: our results point out the dependence of the traction and slip velocity evolution on the adopted constitutive parameters. We therefore model the dynamic rupture propagation on heterogeneous faults. We use in this study the characterization of different frictional regimes proposed by Boatwright and Cocco (1996) based on different values of the constitutive parameters a, b and L. Our numerical simulations show that the heterogeneities of the L parameter affect the dynamic rupture propagation, control the peak slip velocity and weakly modify the dynamic stress drop and the rupture velocity. Moreover, a barrier can be simulated through a large contrast of L parameter. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way. A velocity strengthening area (a 〉 b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties and illustrate how the traction and slip velocity evolutions are modified during the propagation on heterogeneous faults. These results involve interesting implications for slip duration and fracture energy.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: dynamic rupture ; fault constitutive law ; fault friction ; stress heterogeneities ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1860698 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-04
    Description: The northern coast of Sicily and its offshore area represent a hinge zone between a sector of the Tyrrhenian Basin, characterized by the strongest crustal thinning, and the sector of the Sicilian belt which has emerged. This hinge zone is part of a wider W-E trending right-lateral shear zone, which has been affecting the Maghrebian Chain units since the Pliocene. Seismological and structural data have been used to evaluate the seismotectonic behavior of the area investigated here. Seismological analysis was performed on a data set of about 2100 seismic events which occurred between January 1988 and October 2002 in the Southern Tyrrhenian Sea. This paper focuses in particular on a set of data relating to the period from 6th September 2002, including both the main shock and about 540 aftershocks of the Palermo seismic sequence. The distribution of the hypocenters revealed the presence of two main seismogenic zones. The events of the easternmost zone may be related to the Ionian lithospheric slab diving beneath the Calabrian Arc. The seismicity associated with the westernmost zone is closely clustered around a sub-horizontal regression plane contained within the thinned Southern Tyrrhenian crust, hence suggesting that this seismogenic zone is strictly connected to the deformation field active within the hinge zone. On the basis of both structural and seismological data, the brittle deformation pattern is characterized by high-angle faults, mainly represented by transcurrent synthetic right-lateral and antithetic left-lateral systems, producing both restraining/uplifting and releasing/subsiding zones which accommodate strains developing in response to the current stress field (characterized by a maximum axis trending NW-SE) which has been active in the area since the Pliocene. The cluster of the seismic sequence which started with the 6th September 2002's main shock is located within the hinge zone. The distribution of the hypocenters relative to this sequence emphasizes the presence of a high-angle NE-SW-oriented deformation belt within which several shear surfaces are considered to be found sub-parallel to that established for the main shock. The kinematics of all these structures is consistent with a compressive right-lateral focal mechanism.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: seismotectonics ; Southern Tyrrhenian Sea ; Northwestern Sicily ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 7044216 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-07
    Description: In questo lavoro viene descritta l’installazione di una rete mobile nell’area dei Monti Nebrodi in seguito all’evento del 23-06-2011 di Ml = 4.6 e come tale intervento ha contribuito al miglioramento della localizzazione delle sorgenti sismiche soprattutto nella determinazione della profondità degli eventi. Verranno anche presentati i risultati delle localizzazioni ottenute attraverso l’integrazione dei dati acquisiti durante questa campagna, con quelli della rete sismica permanente dell’INGV-Osservatorio Etneo ( INGV -OE).
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: 1-24
    Description: 4IT. Banche dati
    Description: N/A or not JCR
    Description: open
    Keywords: Rete Sismica Mobile ; Nebrodi ; Sciame ; Localizzazione ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-03
    Description: (extended abstract)
    Description: INGV, Regione Sicilia, Ministero Sviluppo Economico
    Description: Published
    Description: Ettore Majorana Foundation and Centre for Scientific Culture, Erice, Sicily
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 5.9. Formazione e informazione
    Description: open
    Keywords: Expanding Earth ; Global Geodynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-11-04
    Description: We present a seismotectonic study of the Amatrice-Campotosto area (Central Italy) based on an integrated analysis of minor earthquake sequences, geological data and crustal rheology. The area has been affected by three small-magnitude seismic sequences: August 1992 (M=3.9), June 1994 (M=3.7) and October 1996 (M=4.0). The hypocentral locations and fault plane solutions of the 1996 sequence are based on original data; the seismological features of the 1992 and 1994 sequences are summarised from literature. The active WSWdipping Mt. Gorzano normal fault is interpreted as the common seismogenic structure for the three analysed sequences. The mean state of stress obtained by inversion of focal mechanisms (WSW-ENE-trending deviatoric tension) is comparable to that responsible for finite Quaternary displacement, showing that the stress field has not changed since the onset of extensional tectonics. Available morphotectonic data integrated with original structural data show that the Mt. Gorzano Fault extends for ~28 km along strike. The along-strike displacement profile is typical of an isolated fault, without significant internal segmentation. The strong evidence of late Quaternary activity in the southern part of the fault (with lower displacement gradient) is explained in this work in terms of displacement profile readjustment within a fault unable to grow further laterally. The depth distribution of seismicity and the crustal rheology yield a thickness of ~15 km for the brittle layer. An area of ~530 km2 is estimated for the entire Mt. Gorzano Fault surface. In historical times, the northern portion of the fault was probably activated during the 1639 Amatrice earthquake (I = X, M~ 6.3), but this is not the largest event we expect on the fault. We propose that a large earthquake might activate the entire 28 km long Mt. Gorzano Fault, with an expected Mmax up to 6.7.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: seismic hazard ; normal faulting ; seismicity ; seismotectonics ; active stress ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2636258 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...