ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes  (3)
  • IAHS Press  (2)
  • Copernicus  (1)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Population growth, urbanization and global climate change have increased urban and agricultural water demands, stressing aquifer systems where groundwater is a source of water supply. The availability and utility of groundwater may further be threatened by factors stressing the quality of groundwater, such as industrial and domestic wastes and agricultural intensification. Consequences include, for example, over-allocation of groundwater, groundwater overdraft, declining well yields and land subsidence; degraded groundwater quality due to mobilization of natural pollutants (arsenic), salt contamination caused by seawater intrusion; increased demand for conjunctively used surface water, and resulting conflicts with junior users; and streamflow capture and resulting damage to ecosystems. These consequences may occur incrementally and inequitably across an aquifer. Natural environmental problems can further complicate use of groundwater and increase strain on the aquifer system; for example, underground structures, geothermal heating (such as heat islands), and geochemical evolution (such as karst formation, excessive salinity, acidity, fluoride, radioactivity, hardness, or turbidity). To address this issue, a joint symposium on the Trends and Sustainability of Groundwater in Highly Stressed Aquifers was held during the 8th Scientific Assembly of the International Association of Hydrological Sciences, IAHS, and the 37th Congress of the International Association of Hydrogeology, IAH, in Hyderabad, India, September 2009. The symposium was organized by the IAHS International Commission on Groundwater (ICGW), supported IAH and by the IAHS International Commission on Water Quality (ICWQ). This symposium brought together scientists, including modellers, geochemists and hydro-geologists, with water supply managers and policy makers to discuss scientific and management ideas and approaches for improving the sustainability of highly stressed aquifers. The importance of this topic was reflected in the large number of contributions to the symposium. Selected papers from this symposium have been compiled in this volume. The editors gratefully acknowledge the assistance of the reviewers who made valuable contributions to this volume. We thank Penny Perrins and Cate Gardner from IAHS Press for their professional approach and help with the processing of the manuscripts.
    Description: Published
    Description: V
    Description: open
    Keywords: goundwater ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    IAHS Press
    Publication Date: 2017-04-03
    Description: Water and chemical fluxes across the sea bottom provide an important linkage between terrestrial and marine environments. From the marine perspective, these water fluxes, commonly referred to as submarine groundwater discharge (SGD), may contain elevated nutrient concentrations or high levels of other potentially harmful contaminants. Terrestrially derived SGD can also be an important source of freshwater for estuarine ecosystems that require relatively low salinities. For these reasons, the past decade has shown a rapid increase in the level of interest from estuary and marine scientists toward a better understanding of SGD. From the terrestrial perspective, SGD has also been a topic of interest to those studying saltwater intrusion and management of coastal aquifers. Saltwater intrusion studies commonly employ some form of a water balance method, whether through numerical modelling or volumetric calculations, to explain intrusion patterns and develop predictions and management plans. In developing a water balance for a coastal aquifer, estimates for all of the key components, including SGD, are synthesized. Although the motivation may be different depending on whether one works from the marine or terrestrial perspective, both groups have a common goal of obtaining accurate SGD estimates
    Description: Published
    Description: V-VI
    Description: open
    Keywords: seawater intrusion ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...