ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • geophysics
  • GFZ Data Services  (19)
  • American Geophysical Union (AGU)  (1)
  • 1
    Publication Date: 2024-03-25
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The SG site “Serrahn” is located in the TERENO Observatory in the nort-eastern German lowlands. The observatory contributes to investigating the regional impact of climate and land use change. At the IGETS site Serrahn, the mean annual temperature is 8.8 °C and mean annual precipitation is 591 mm. The land cover is mainly characterized as a mixed forest, dominated by European beech and Scots pine. Influenced by the last glaciation in an outwash close to the terminal morraine, the uppermost soil layer of the site consists of aeolian sands up to a depth of 450 cm, followed by coarser sandy material with intercalated till layers. The unconfined groundwater level is at about 14 m below surface. There is hardly any human activity (e.g., traffic) at this quiet forest site. The nearest town is Neustrelitz at a distance of 5 km. Since December 2017, the superconducting gravimeter iGrav-033 is operated outdoors at this forest location (Latitude: 53.3392 N, Longitude: 13.17413 E, Elevation: 79.60 m). The gravimeter is installed in a dedicated field enclosure on top of a concrete pillar with an area of 1.1 m x 1.1 m at an elevation of 0.80 m above the terrain surface. The pillar has been build to a depth of 2.00 m below the surface. One additional pillar (also 1.1 m x 1.1 m, at surface level) is located right next to the iGrav installation and is used for repeated observations with absolute gravimeters (AG). At the site, meteorological (precipitation, air temperature, humidity, air pressure) and hydrological (groundwater, soil moisture, sapflow, throughfall) parameters are monitored by different sensors. Raw gravity and local atmospheric pressure records sampled at second intervals and the same records decimated at 1‐minute samples are provided as Level 1 products to the IGETS network.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; geophysics ; geodesy ; hydrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; environment 〉 geophysical environment ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GRAVITY STATIONS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SGO ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Gravimeters 〉 SUPERCONDUCTING GRAVIMETER ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-13
    Description: Abstract
    Description: The occurrence of exposed high-metamorphic rocks (granulites) in combination with various gravity anomalies aligned along the direction of Variscan strike characterize a special terrain (Saxothuringikum) which has been sandwiched between two major tectonic units during the Variscan orogeny. Near surface geological studies show evidence that the Saxothuringian zone represents extended crust. Therefore the model of a "metamorphic core complex" is often used to explain the exhumation of the "Saxonian granulites". The thickness of the crust, the geometry of the Moho, and the composition of middle and lower crust that underlie such" metamorphic core complexes" have remained largely unconstrained. Because these physical parameters are critical for understanding the extensional processes acting at depth, we have carried out a seismic refraction experiment in order to resolve the deeper structure of an exposed "granulite-complex". From May 6th to May 13th 1995 a seismic refraction - wide angle reflection experiment was carried out as part of the DFG-priority program: "Orogenic processes – their quantification and simulation at the example of the Variscides". Two lines, A and B, were completed in two deployments (see map in GRANU95_report.pdf). In total 12 shots were fired and over 4500 seismograms were collected using 130 instruments. Only two different types of instruments (Reftek and PDAS) have been used for recording the explosions. All instruments were equipped with a 3-component 1Hz seismometer. The 90 km long NW-SE line (deployment A, 74 instruments) from Leipzig to the Erzgebirge through the Saxonian Granulites was carried out on the 8th and 9th May 1995. Additionally 56 stations were placed symmetrically to shotpoint D along line B (perpendicular to line A). Shots were fired on locations A1, A3, A4, A2 (see map in GRANU95_report.pdf). The station spacing for this deployment was around 1.3 km. The 260 km long SW-NE line (deployment B, 93 instruments) from Dresden to Bamberg, also crossing the Saxonian Granulites was completed from 11th to 13th May 1995. Every second instrument from deployment A was moved to complete line B. Shots were fired on locations B, C, D, E, F, G, H and I (see map in GRANU95_report.pdf) and recorded along line B and line A (perpendicular to line B) at a receiver spacing of about 2.6 km.
    Keywords: Saxonian granulites ; metamorphic core complex ; seismic refraction ; geophysics ; GRANU95 – seismic refraction experiment ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-01
    Description: Abstract
    Description: We present a new, consistently processed seismicity catalogue for the Eastern and Southern Alps, based on the temporary dense Swath-D monitoring network. The final catalogue includes 6,053 earthquakes for the time period 2017-2019 and has a magnitude of completeness of −1.0ML. The smallest detected and located events have a magnitude of −1.7ML. Aimed at the low to moderate seismicity in the study region, we generated a multi-level, mostly automatic workflow which combines a priori information from local catalogues and waveform-based event detection, subsequent efficient GPU-based event search by template matching, P & S arrival time pick refinement and location in a regional 3-D velocity model. The resulting seismicity distribution generally confirms the previously identified main seismically active domains, but provides increased resolution of the fault activity at depth. In particular, the high number of small events additionally detected by the template search contributes to a more dense catalogue, providing an important basis for future geological and tectonic studies in this complex part of the Alpine orogen.
    Description: TableOfContents
    Description: Seismicity catalogue Python codes & metadata Seismicity cross-sections
    Keywords: Seismology ; Seismic Waveform Analysis ; Eastern Alps ; Earthquake ; Geophysics ; Template matching ; 4DMB ; 4D Mountain Building ; EARTH SCIENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; geophysics ; seismology ; surface processes ; tectonics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-09
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. Raw gravity and local atmospheric pressure records sampled at second and the same records decimated at 1‐minute samples are provided as Level 1 products of the IGETS network for the Pecný station (https://doi.org/10.5880/igets.pe.l1.001). The corrected 1-minute samples have been prepared by operators of the station, from raw decimated 1-minute samples, by following steps: 1) The 1-minute samples have been used to compute residual gravity signal by using the SG calibration factor and applying corrections from tides, atmosphere and polar motion. 2) These data have been associated with auxiliary data from the SG (Dewar Pressure, Tx/Ty balance, Neck temperature etc.) and information from LOG files. 3) Gaps have been created in the residual gravity signal according to auxiliary data and log files. Moreover, gaps were created also for large disturbances, where the residual signal exceeding 20 nm/s^2. 4) Gaps up to 24 hours were filled by a linear fit. 5) Spikes exceeding 5 nm/s^2 were removed by using TSOFT. 6) Steps were applied only in exceptional cases in accordance with LOG files. 7) The cleaned residual signal was converted to corrected 1-minute samples by using the same corrections and the calibration factor as used in 1). Therefore, the corrected 1-minute signal is again in units as the raw data (Volt). Note, since 31 October 2017, the OSG-050 is running at new site (NGL - new gravimetric laboratory at Pecný) according to https://doi.org/10.5880/igets.pe.l1.001.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; geophysics ; geodesy ; hydrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; environment 〉 geophysical environment ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GRAVITY STATIONS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SGO ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Gravimeters 〉 SUPERCONDUCTING GRAVIMETER ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-02
    Description: Abstract
    Description: We perform a teleseismic P-wave travel-time tomography to examine the geometry and structure of subducted lithosphere in the upper mantle beneath the Alpine orogen. The tomography is based on waveforms recorded at over 600 temporary and permanent broadband stations of the dense AlpArray Seismic Network deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po plain to the river Main. Teleseismic travel times and travel-time residuals of direct teleseismic P-waves from 331 teleseismic events of magnitude 5.5 and higher recorded between 2015 and 2019 by the AlpArray Seismic Network are extracted from the recorded waveforms using a combination of automatic picking, beamforming and cross-correlation. The resulting database contains over 162.000 highly accurate absolute P-wave travel times and travel-time residuals. For tomographic inversion, we define a model domain encompassing the entire Alpine region down to a depth of 600 km. Predictions of travel times are computed in a hybrid way applying a fast Tau-P method outside the model domain and continuing the wavefronts into the model domain using a fast marching method. We iteratively invert demeaned travel-time residuals for P-wave velocities in the model domain using a regular discretization with an average lateral spacing of about 25 km and a vertical spacing of 15 km. The inversion is regularized towards an initial model constructed from a 3D a priori model of the crust and uppermost mantle and a 1D standard earth model beneath. The resulting model provides a detailed image of slab configuration beneath the Alpine and Apenninic orogens. Major features are a partly overturned Adriatic slab beneath the Apennines reaching down to 400 km depth still attached in its northern part to the crust but exhibiting detachment towards the southeast. A fast anomaly beneath the western Alps indicates a short western Alpine slab whose easternmost end is located at about 100 km depth beneath the Penninic front. Further to the east and following the arcuate shape of the western Periadriatic Fault System, a deep-reaching coherent fast anomaly with complex internal stucture generally dipping to the SE down to about 400 km suggests a slab of European origin limited to the east by the Giudicarie fault in the upper 200 km but extending beyond this fault at greater depths. In its eastern part it is detached from overlying lithosphere. Further to the east, well-separated in the upper 200 km from the slab beneath central Alps but merging with it below, another deep-reaching, nearly vertically dipping high-velocity anomaly suggests the existence of a slab beneath the Eastern Alps of presumably the same origin which is completely detached from the orogenic root. The data are fully described in Paffrath et al. (2021). The model is provided as tabular data with six columns (1) Longitude (deg), (2) Latitude (deg), (3) Depth (km), (4) vp (km/s), (5) dVp (%), (6) Resolution.
    Keywords: geophysics ; seismology ; P-wave ; elastic waves ; body waves ; tomography ; 4DMB ; 4D Mountain Building ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; geological process 〉 seismic activity 〉 earthquake ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; monitoring 〉 seismic monitoring ; science 〉 natural science 〉 earth science 〉 geophysics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-01
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The Hurbanovo gravimetric observatory in southern Slovakia was established in 2019 as a part of the integrated station HUVO (GNSS permanent station and seismic station). HUVO is located on a ground floor in a small building in the vicinity of the Hurbanovo Geomagnetic Observatory, which was founded on September 30, 1900. Integration of InSAR transponder into current station architecture is also planned in 2022. The gravimetric observatory equipped with the spring gravimeter gPhoneX #108 provides continuous time-varying gravity and atmospheric pressure data. The spring gravimeter gPhoneX #108 is installed on a concrete block isolated from the rest of the building grounding. The room containing gravimeter is thermally stabilized at around 22 ± 1°C using an air conditioning unit. An additional thermal polystyrene insulation is placed around the instrument further decreasing temperature variations on its surface. Concerning signal to noise ratio, the HUVO station can be characterized as moderately noisy. The operation and maintenance of the HUVO gravimetric instrumentation is done mainly by the staff of the Slovak University of Technology. HUVO gravimetric observatory is also equipped with the accelerometer Raspberry Shake (4D) installed on the same concrete block as the spring gravimeter, operated by the staff of the Slovak Academy of Sciences. Several other meteorological sensors are also present at the site in the close vicinity of the gPhoneX #108: the meteorological station MWS 9-5, a well equipped with the ground-water level sensor and a total number of 16 sensors measuring the soil moisture. These sensors provide information necessary for modelling the gravity response associated with the variation of local hydrological masses.
    Keywords: Relative gravimetry ; Earth tides ; Geodynamics ; International Geodynamics and Earth Tide Service ; IGETS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; geodesy ; geophysics ; hydrology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-28
    Description: Abstract
    Description: This dataset contains data of a reflection seismic profile in North-Western Namibia. The measurements were carried out in continuation of the LISPWAL project aiming to decipher the lithospheric structure of the Namibian passive margin at the intersection with the Walvis Ridge (Ryberg et al., 2014a, b; 2015). Scientific aims were a) to produce a high-resolution image of the reflectivity of the lower-crustal high-velocity body revealed by wide-angle observations; b) an improved understanding of how continental crust and plume head interact, c) to investigate what the extent and volumes of magmatic underplating are, and d) to understand how and which inherited (continental) structures might have been involved and utilized in the break up process. The dataset contains seismic data, including raw and SEG Y files, of the controlled-source survey in North-Western Namibia (Kaokoveld) using near-vertical reflection seismic methods.
    Description: Other
    Description: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Keywords: geophysics ; controlled-source seismic survey ; onshore ; offshore ; continental margin ; Namibia ; Walvis Ridge ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2022-11-29
    Description: Abstract
    Description: The Villarrica Volcano is one of the most active volcanoes in South America and is located in a major tourism region. A dense temporal seismological network was installed to investigate the volcanic seismicity and the seismic structure of the edifice with seismic traveltime tomography at high spatial resolution. The network was in operation for 2 weeks from 01.03.2012 to 14.03.2012. It consisted of 30 three-component and 45 one-component short period seismographs covering an area of about 2000 km2. The covered area has a diameter of 45 km and includes the volcanic building.
    Description: Other
    Description: The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz-potsdam.de/gipp for more information.
    Keywords: geophysics ; Volcano seismology ; seismic tomography ; seismotectonics ; PASSIVE_SEISMIC 〉 NETWORK ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; LAND ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-11-29
    Description: Abstract
    Description: During 1978-79, a seismic refraction experiment was carried out in the Rhenish Massif, West Germany, and adjacent areas, extending through Belgium and Luxembourg into the Paris Basin in France. The experiment was designed to investigate the structure of the crust and uppermost mantle beneath the massif and thus help in a multidisciplinary study, sponsored by the Deutsche Forschungsgemeinschaft, into the causes and mechanisms of uplift of the massif. The Aachen-Baumholder (L1/L2-M1/M2) profile was completed in May and August, 1978. The 600 km long, main profile and the cross profiles, B-K and K-F, were completed in May 1979. During the main experiment in May 1979, 137 recording units of the MARS type from various European countries participated. 20 shots were fired in 1979 and thus a total of 2740 three-component recordings were made.
    Keywords: Rhenish Massif ; seismic refraction ; geophysics ; plateau uplift ; 1978-79 Rhenish Massif seismic refraction experiment ; GIPP Grant Number 197901 ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 WIDE-ANGLE_REFLECTION_REFRACTION ; CONTROLLED_SOURCE_SEISMOLOGY 〉 EXPLOSION_SOURCE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 CRUSTAL_SCALE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 REGIONAL_SCALE ; CONTROLLED_SOURCE_SEISMOLOGY 〉 DSS ; SENSOR 〉 GEOPHONE ; LAND ; SEG-Y_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; CONTROLLED_SOURCE_SEISMOLOGY 〉 RAW_DATA ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-21
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The Walferdange Underground Laboratory for Geodynamics (WULG) is located at the middle of a long labyrinth of galleries which originally have been established for the commercial extraction of gypsum. Exceptional temperature and humidity stability, the absence of water and human perturbations, distance from the ocean and easy access, were some of the motivations for initially choosing this site for instrumentation and Earth tide research. Instruments to measure the micro deformations produced by the tidal forces have been developed and tested in the Laboratory for more than 30 years. Ground deformations and earthquakes are or have been recorded continuously by means of spring gravimeters, vertical and horizontal pendulums, long base water tube tiltmeters, vertical and horizontal strain meters, short period and broad band seismometers. Meteorological parameters (temperature, humidity and atmospheric pressure), as well as radon gas emissions, are also continuously monitored in various locations within the mine. In 2000, the Minister of Research of the Grand-Duchy of Luxembourg decided to establish a new International Reference Station for Intercomparisons of Absolute Gravimeters (ISIAG). The instrumentation to support the project includes a superconducting gravimeter OSG-CT040, an absolute gravimeter FG5X-216, and other ancillary equipment necessary to support research. In January 2002, a first superconducting gravimeter was installed. The instrument was then stopped in March 2003 due to an abnormally large instrumental drift. In December 2003, it was replaced by a brand-new gravimeter with the same name and which continuously operates since that date. Absolute gravity measurements have been performed on a regular time base to calibrate the superconducting gravimeter and to estimate its instrumental drift. Since 2003, the WULG hosted three European Comparisons and one International Comparison of Absolute Gravimeters. It was the first international comparison outside the walls of the BIPM (Bureau International des Poids et Mesures) in Sèvres (France) where it had traditionally been organized for 30 years.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; geophysics ; geodesy ; hydrology ; Absolute gravimetry ; Metrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Earthquake Early Warning and Rapid Response Systems (EEWRRS) should be a viable complement to other disaster risk reduction strategies, particularly in economically developing countries. The „Early Warning and Impact Forecasting“ group (GFZ, section 2.6) is actively involved in the development of novel strategies to develop scientific and technological solutions that may be efficiently applied in countries with limited resources. The proposed solution includes a risk estimation module that extracts from a portfolio of precomputed impact scenarios those matching the characterization of the event detected by an optimized real-time monitoring network. The real-time network integrates both local, on-site components based on low-cost, smart sensor platforms, as well as regional, sparse strong-motion stations. This hybrid solution allows for the optimization of the lead-time and is tailored to the seismotectonic features of the considered region. A prototype EEWRR System is being developed for the Kyrgyz Republic, with the support of the partner CAIAG and in collaboration with the Ministry of Emergency Solutions of the Government of the Kyrygz Republic (MES). Waveform data are available from the GEOFON data centre, under network code AD.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Building monitoring and decentralized, on-site Earthquake Early Warning system for the Kyrgyz capital Bishkek. Several low cost sensors equipped with MEMS accelerometers have been installed in eleven buildings within the urban area of the city. The different sensing units communicate with each other via wireless links and the seismic data are streamed in real-time to data centres at GFZ and the Central Asian Institute for Applied Geoscience (CAIAG) using internet. Since each sensing unit has its own computing capabilities, software for data processing can be installed to perform decentralised actions. In particular, each sensing unit can perform event detection tasks and run software for on-site early warning. If a description for the vulnerability of the building is uploaded to the sensing unit, this can be exploited to introduce the expected probability of damage in the early-warning protocol customized for a specific structure. Waveform data are available from the GEOFON data centre, under network code KD.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2022-02-17
    Description: Abstract
    Description: This code is a python implementation of the p- and s-wave velocity to density conversion approach after Goes et al. (2000). The implementation has been optimised for regular 3D grids using lookup tables instead of Newton iterations.Goes et al. (2000) regard the expansion coefficient as temperature dependent using the relation by Saxena and Shen (1992). In `Conversion.py`, the user can additionally choose between a constant expansion coefficient or a pressure- and temperature dependent coefficient that was derived from Hacker and Abers (2004).For detailed information on the physics behind the approach have a look at the original paper by Goes et al. (2000). Up-to-date contact information are given on the author's github profile https://github.com/cmeessen.
    Keywords: seismology ; geophysics ; geoscience ; conversion ; upper mantle ; temperature ; density ; seismic velocity
    Type: Software
    Format: 2135347 Bytes
    Format: 4 Files
    Format: application/x-zip-compressed
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-09-07
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy. IGETS continues the activities of the Global Geodynamics Project (GGP) between 1997 and 2015 to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. As part of this network, the Onsala station (code OS, instrument GWR OSG 054) was established in 2009 thanks to the financial support of the Committee for Infrastructure of the Swedish Research Council, until 2021, and of the Swedish geodetic survey Lantmäteriet since 2021. Continuous time-varying gravity and atmospheric pressure data from OS are integrated in the IGETS data base hosted by ISDC (Information System and Data Centre) at GFZ. The OS station (longitude: 11.9266 E; latitude: 57.3858 N and elevation: 7.93 m) is located at the Onsala Space Observatory, south of Gothenbourg, a well instrumented site for geodetic and meteorological studies (https://www.chalmers.se/en/researchinfrastructure/oso/Pages/default.aspx). An air-circulation system controls the humidity and temperature in the gravimeter house and there are 3 pillars available. Absolute gravity measurements are done every year by Lantmäteriet. - The time series of gravity and barometric pressure started in July 2009 and is going on. - The time sampling of the raw gravity and barometric pressure data of IGETS Level 1 is 1 minute. For a detailed description of the IGETS data base and the provided files see Voigt et al. (2016, http://doi.org/10.2312/GFZ.b103-16087). Rainfall data are also provided as auxiliary data to IGETS database. OS data are used in conjunction with projects of the Nordic Geodetic Commission (NKG) - Working Group for Geodynamics (https://www.nordicgeodeticcommission.com/working-group-of-geodynamics/). Interactive graphs are available at https://lab3.oso.chalmers.se/wx/gravimeter_data/
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; geodesy ; geophysics ; hydrology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-03-07
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy IAG. IGETS continues the activities of the Global Geodynamics Project (GGP) between 1997 and 2015 to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. As part of this network, the superconducting gravimeter TT70 No. 18 by GWR recorded gravity data at the Gravimetric Observatory Potsdam Telegrafenberg, northeast cellar of building A17 (Helmert House) site S12. Continuous time-varying gravity and barometric pressure data from the SG at GFZ are integrated in the IGETS data base hosted by GFZ. The time series of gravity and barometric pressure data starts in July 1992 and ends in August 1998. The SG was upgraded by GWR in 1999 replacing the gravity sensing unit by a dual sphere and was installed as SG D037 at Sutherland (Förste et al. 2016, http://doi.org/10.5880/igets.su.l1.001). For a detailed description of the IGETS data base and the provided files see Voigt et al. (2016, http://doi.org/10.2312/GFZ.b103-16087).
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; geophysics ; geodesy ; hydrology
    Type: Dataset
    Format: 2 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-07-08
    Description: Abstract
    Description: The Stress Map of the Mediterranean and Central Europe 2016 displays 5011 A-C quality stress data records of the upper 40 km of the Earth’s crust from the WSM database release 2016 (Heidbach et al, 2016, http://doi.org/10.5880/WSM.2016.001). Focal mechanism solutions determined as being potentially unreliable (labelled as Possible Plate Boundary Events in the database) are not displayed. Further detailed information on the WSM quality ranking scheme, guidelines for the various stress indicators, and software for stress map generation and the stress pattern analysis is available at www.world-stress-map.org.
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Keywords: crustal stress ; in situ stress ; tectonic stress ; crustal stress pattern ; tectonics ; geophysics ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION DIRECTION ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA SEARCH AND RETRIEVAL
    Type: Dataset
    Format: 13765676 Bytes
    Format: 1 Files
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Iquique Local Network (ILN), a temporal network of broadband and short period seismic stations has been operating in Northern Chile since 2009. The aim of this installation was to locally densify the permanent seismic installation of the Integrated Plate Boundary Observatory in Chile (IPOC), with the main goal to decrease the magnitude of detected earthquake, to improve the hypocentral location accuracy, to allow a more accurate investigation of seismic source parameters, and to analyse proposed seismogenic structures of the Northern Chile seismic gap. The network setup evolved with time, with different geometries at different installation phases, aiming to study different seismicity features. In the first phase, started in 2009 and operational since 2010 until autumn 2013, the network had a sparse configuration, targeting a broad region extending from 19.5° S in the North to approximately 21.3° S South of Iquique. In the following stage, operational until fall 2017, most broadband stations were rearranged into a small aperture seismic array (PicArray) close to the village of Pica, to monitor with array techniques the shallow seismicity at the plate interfacer, intermediate and deep focus seismicity. Waveform data are available from the GEOFON data centre, under network code IQ, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki.The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data are available from the GEOFON data centre, under network code HE, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-05-12
    Description: Abstract
    Description: Sodankylä geophysical observatory (SGO) has operated in Sodankylä in northern Finland since 1913. SGO was originally founded by the Finnish Academy of Science and Letters. Now it takes care of national and international duties studying the space and geoenvironment as an independent research organisation in the University of Oulu. SGO performs long-term measurements, builds instruments, innovates and maintains domestic and international measurements, and performs research from these measurements. The seismic observations at SGO started in Sodankylä 1956. In 2005-2006 SGO seismic stations were updated to broadband instrumentation and connected to GEOFON data center. Today, the number of seismic stations has increased to 9. The stations have Streckeisen STS-2 or Nanometrics Trillium PA/PH broadband sensors. 3 of the stations are so called Posthole stations located in borehole 7-20 m below surface. The rest of the stations are located on the surface or in a more traditional type of vault. Data acquisition systems are either Earth Data PS6-24 digitisers and PC with Seiscomp or Nanometrics Centaurs. The continuous wave form data is collected at 100 Hz sampling frequency. The VH, LH and BH channel data is available from GEOFON data center and the 100Hz HH data from SGO by request. Further information about instrumentation can be found at the Institute’s web site (https://www.sgo.fi/). Waveform data are available from the GEOFON data centre, under network code FN, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Journal cover
    Unknown
    Wiley-Blackwell - STM | American Geophysical Union (AGU)
    Online: 1.2000 –
    Online: 1.2000 –
    Publisher: Wiley-Blackwell - STM , American Geophysical Union (AGU)
    Corporation: American Geophysical Union, AGU , Geochemical Society
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Keywords: Geochemie ; geochemistry ; Geophysik ; geophysics ; United States of America ; USA
    Acronym: G-cubed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...