ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: We study land subsidence processes and the associated ground fissuring, affecting an active graben filled by thick unconsolidated deposits by means of InSAR techniques and fieldwork. On 21 September 2012, Ciudad Guzmán (Jalisco, Mexico) was struck by ground fissures of about 1.5 km of length, causing the deformation of the roads and the propagation of fissures in adjacent buildings. The field survey showed that fissures alignment is coincident with the escarpments produced on 19 September 1985, when a strong earthquake with magnitude 8.1 struck central Mexico. In order to detect and map the spatio-temporal features of the processes that led to the 2012 ground fissures, we applied InSAR multitemporal techniques to process ENVISAT-ASAR and RADARSAT-2 satellite SAR images acquired between 2003 and 2012. We detect up to 20 mm/year of subsidence of the northwestern part of Ciudad Guzmán. These incremental movements are consistent with the ground fissures observed in 2012. Based on interferometric results, field data and 2D numerical model, we suggest that ground deformations and fissuring are due to the presence of areal subsidence correlated with variable sediment thickness and differential compaction, partly driven by the exploitation of the aquifers and controlled by the distribution and position of buried faults.
    Description: Published
    Description: 8610-8630
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: InSAR ; ground subsidence ; buried faults ; ground fissuring ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-02
    Description: Changbaishan volcano (China/North Korea border) consists of a cone with a summit caldera and last erupted in 1903. An unrest episode occurred between 2002 and 2006, followed by subsidence. The volcano was responsible for the largest eruption of the last Millennium in 946 CE and it is characterized by a multi-level plumbing system. Here, we analyze the Changbaishan 2018-2020 deformations by using remote sensing data, detecting an up to 20 mm/yr, NW-SE elongated nearly-uplift of its southeastern flank and a -20 mm/yr nearly-subsidence of the southwestern flank. Modeling results show that three active sources are responsible for the observed ground velocities: a deep tabular deflating source, a shallower inflating NW-SE elongated spheroid source, and a NW-SE striking dip-slip fault. The depth and geometry of the inferred sources are consistent with independent petrological and geophysical data. Our results reveal an upward magma migration from 14 km to 7.7 km. The modeling of the leveling data of the 2002-2005 uplift and 2009-2011 subsidence depicts sources consistent with the 2018-2020 active system retrieved. The past unrest is related to pressurization of the upper portion of the spheroid magma chamber, whereas the subsidence is due to crystallization of its floor, this latter reactivated in 2018-2020. Therefore, Changbaishan is affected by an active magma recharge controlled by a NW-SE trending fault system. Satellite data analysis is a key tool to unravel the magma dynamics at poorly monitored and crossborder volcanoes.
    Description: Published
    Description: 741287
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: active magma recharge ; Plumbing system ; Deformation modelling ; Changbaishan volcano ; InSAR ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-08
    Description: Volcanic and Seismic source Modeling (VSM) is an open-source Python tool to model ground deformation. VSM allows the user to choose one or more deformation sources of various shapes as a forward model among sphere, spheroid, ellipsoid, rectangular dislocation, and sill. It supports multiple datasets from most satellite and terrestrial geodetic techniques: Interferometric SAR, GNSS, leveling, Electronic Distance Measurements, tiltmeters, and strainmeters. Two sampling algorithms are available: one is a global optimization algorithm based on the Voronoi cells and yields the best-fitting solution and the second follows a probabilistic approach to parameters estimation based on the Bayes theorem and the Markov chain Monte Carlo method. VSM can be executed as Python script, in Jupyter Notebook environments, or by its Graphical User Interface. Its broad applications range from high-level research to teaching, from single studies to near real-time hazard estimates. Potential users range from early-career scientists to experts. It is freely available on GitHub (https://github.com/EliTras/VSM) and is accompanied by step-by-step documentation in Jupyter Notebooks. This study presents the functionalities of VSM and test cases to describe its use and comparisons among possible settings.
    Description: This work was jointly supported by the “Research Lifecycle Management technologies for Earth Science Communities and Copernicus users in EOSC” Reliance project funded by the European Commission’s H2020 2021-2022 (Grant Agreement no. 101017501); Pianeta Dinamico—Working Earth project (2020-2030) funded by the Italian Ministry of University and Research (Decree no. 1118 04/12/2019); and “Linking Surface Observables to sub-Volcanic Plumbing-System: A Multidisciplinary Approach for Eruption Forecasting at Campi Flegrei Caldera (Italy)” LOVE-CF (2020-2023) project funded by INGV (Internal Register no. 1865 17/07/2020).
    Description: Published
    Description: 917222
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: analytical model ; geodetic data ; natural hazards ; open science ; inverse theory ; InSAR ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...