ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media  (145)
  • Periodicals Archive Online (PAO)
  • American Chemical Society
  • 2020-2023  (160)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yoshii, A., & Green, W. N. Editorial: role of protein palmitoylation in synaptic plasticity and neuronal differentiation. Frontiers in Synaptic Neuroscience, 12(27), (2020), doi:10.3389/fnsyn.2020.00027.
    Description: Protein palmitoylation, the reversible addition of palmitate to proteins, is a dynamic post-translational modification. Both membrane (e.g., channels, transporters, and receptors) and cytoplasmic proteins (e.g., cell adhesion, scaffolding, cytoskeletal, and signaling molecules) are substrates. In mammals, palmitoylation is mediated by 23-24 palmitoyl acyltransferases (PATs), also called ZDHHCs for their catalytic aspartate-histidine-histidine-cysteine (DHCC) domain. PATs are integral membrane proteins found in cellular membranes. In the palmitoylation cycle, palmitate is removed by the depalmitoylation enzymes, acyl palmitoyl transferases (APT1 and 2), and α/β Hydrolase domain-containing protein 17 (ABHD17A-C). These are cytoplasmic proteins that are targeted to membranes where they are substrates for PATs. The second class of depalmitoylating enzymes are palmitoyl thioesterases, PPT1 and 2, discovered through their association with infantile neuronal ceroid lipofuscinosis. These are secreted proteins found in the lumen of intracellular organelles, primarily lysosomes, where their function as depalmitoylating enzymes is unclear.
    Description: This work was supported by University of Illinois start-up fund (to AY) and NIH/NIDA (grant DA044760 to WG).
    Keywords: palmitoylation and depalmitoylation ; synaptic plasticity ; axonal growth ; lysosome ; neurodegenerative disease ; neuronal ceroid lipofuscinoses (NCL) ; Huntington disease
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Beam, J. P., Becraft, E. D., Brown, J. M., Schulz, F., Jarett, J. K., Bezuidt, O., Poulton, N. J., Clark, K., Dunfield, P. F., Ravin, N. V., Spear, J. R., Hedlund, B. P., Kormas, K. A., Sievert, S. M., Elshahed, M. S., Barton, H. A., Stott, M. B., Eisen, J. A., Moser, D. P., Onstott, T. C., Woyke, T., & Stepanauskas, R. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Frontiers in Microbiology, 11, (2020): 1848, doi:10.3389/fmicb.2020.01848.
    Description: Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell–cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.
    Description: This work was funded by the USA National Science Foundation grants 1441717, 1826734, and 1335810 (to RS); and 1460861 (REU site at Bigelow Laboratory for Ocean Sciences). RS was also supported by the Simons Foundation grant 510023. TW, FS, and JJ were funded by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231. NR group was funded by the Russian Science Foundation (grant 19-14-00245). SS was funded by USA National Science Foundation grants OCE-0452333 and OCE-1136727. BH was funded by NASA Exobiology grant 80NSSC17K0548.
    Keywords: Bacteria ; Archaea ; evolution ; genomics fermentation ; respiration ; oxidoreductases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-07
    Description: Microplastic (MP) pollution has been found in the Southern Ocean surrounding Antarctica, but many local regions within this vast area remain uninvestigated. The remote Weddell Sea contributes to the global thermohaline circulation, and one of the two Antarctic gyres is located in that region. In the present study, we evaluate MP (〉300 μm) concentration and composition in surface (n = 34) and subsurface water samples (n = 79, ∼11.2 m depth) of the Weddell Sea. All putative MP were analyzed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. MP was found in 65% of surface and 11.4% of subsurface samples, with mean (±standard deviation (SD)) concentrations of 0.01 (±0.01 SD) MP m–3 and 0.04 (±0.1 SD) MP m–3, respectively, being within the range of previously reported values for regions south of the Polar Front. Additionally, we aimed to determine whether identified paint fragments (n = 394) derive from the research vessel. Environmentally sampled fragments (n = 101) with similar ATR-FTIR spectra to reference paints from the research vessel and fresh paint references generated in the laboratory were further subjected to micro-X-ray fluorescence spectroscopy (μXRF) to compare their elemental composition. This revealed that 45.5% of all recovered MP derived from vessel-induced contamination. However, 11% of the measured fragments could be distinguished from the reference paints via their elemental composition. This study demonstrates that differentiation based purely on visual characteristics and FTIR spectroscopy might not be sufficient for accurately determining sample contamination sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roman-Vendrell, C., Medeiros, A. T., Sanderson, J. B., Jiang, H., Bartels, T., & Morgan, J. R. Effects of excess brain-derived human alpha-synuclein on synaptic vesicle trafficking. Frontiers in Neuroscience, 15, (2021): 639414, https://doi.org/10.3389./fnins.2021.639414
    Description: α-Synuclein is a presynaptic protein that regulates synaptic vesicle trafficking under physiological conditions. However, in several neurodegenerative diseases, including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, α-synuclein accumulates throughout the neuron, including at synapses, leading to altered synaptic function, neurotoxicity, and motor, cognitive, and autonomic dysfunction. Neurons typically contain both monomeric and multimeric forms of α-synuclein, and it is generally accepted that disrupting the balance between them promotes aggregation and neurotoxicity. However, it remains unclear how distinct molecular species of α-synuclein affect synapses where α-synuclein is normally expressed. Using the lamprey reticulospinal synapse model, we previously showed that acute introduction of excess recombinant monomeric or dimeric α-synuclein impaired distinct stages of clathrin-mediated synaptic vesicle endocytosis, leading to a loss of synaptic vesicles. Here, we expand this knowledge by investigating the effects of native, physiological α-synuclein isolated from the brain of a neuropathologically normal human subject, which comprised predominantly helically folded multimeric α-synuclein with a minor component of monomeric α-synuclein. After acute introduction of excess brain-derived human α-synuclein, there was a moderate reduction in the synaptic vesicle cluster and an increase in the number of large, atypical vesicles called “cisternae.” In addition, brain-derived α-synuclein increased synaptic vesicle and cisternae sizes and induced atypical fusion/fission events at the active zone. In contrast to monomeric or dimeric α-synuclein, the brain-derived multimeric α-synuclein did not appear to alter clathrin-mediated synaptic vesicle endocytosis. Taken together, these data suggest that excess brain-derived human α-synuclein impairs intracellular vesicle trafficking and further corroborate the idea that different molecular species of α-synuclein produce distinct trafficking defects at synapses. These findings provide insights into the mechanisms by which excess α-synuclein contributes to synaptic deficits and disease phenotypes.
    Description: This work was supported by the NIH (NINDS/NIA R01NS078165 and R01NS078165-S1 to JM; NINDS U54-NS110435, R01-NS109209, and R21-NS107950 to TB); research funds from the Marine Biological Laboratory (to JM); grants from the UK Dementia Research Institute (DRI), which receives its funding from DRI Ltd., the UK Medical Research Council and Alzheimer’s Society, and Alzheimer’s Research UK (to TB); the Michael J. Fox Foundation (Ken Griffin Imaging Award to TB); a Parkinson’s Disease Foundation Stanley Fahn Award (PF-JFA-1884 to TB); the Eisai Pharmaceutical postdoctoral program to TB; and the Chan Zuckerberg Collaborative Pairs Initiative (to TB).
    Keywords: Clathrin mediated endocytosis ; Electron microscopy ; Endosome ; Lamprey ; Reticulospinal synapse
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molino, G. D., Defne, Z., Aretxabaleta, A. L., Ganju, N. K., & Carr, J. A. Quantifying slopes as a driver of forest to marsh conversion using geospatial techniques: application to Chesapeake Bay coastal-plain, United States. Frontiers in Environmental Science, 9, (2021): 616319, https://doi.org/10.3389/fenvs.2021.616319.
    Description: Coastal salt marshes, which provide valuable ecosystem services such as flood mitigation and carbon sequestration, are threatened by rising sea level. In response, these ecosystems migrate landward, converting available upland into salt marsh. In the coastal-plain surrounding Chesapeake Bay, United States, conversion of coastal forest to salt marsh is well-documented and may offset salt marsh loss due to sea level rise, sediment deficits, and wave erosion. Land slope at the marsh-forest boundary is an important factor determining migration likelihood, however, the standard method of using field measurements to assess slope across the marsh-forest boundary is impractical on the scale of an estuary. Therefore, we developed a general slope quantification method that uses high resolution elevation data and a repurposed shoreline analysis tool to determine slope along the marsh-forest boundary for the entire Chesapeake Bay coastal-plain and find that less than 3% of transects have a slope value less than 1%; these low slope environments offer more favorable conditions for forest to marsh conversion. Then, we combine the bay-wide slope and elevation data with inundation modeling from Hurricane Isabel to determine likelihood of coastal forest conversion to salt marsh. This method can be applied to local and estuary-scale research to support management decisions regarding which upland forested areas are more critical to preserve as available space for marsh migration.
    Description: Funding for this study was provided by the United States Geological Survey’s Coastal/Marine Hazards and Resources Program and Ecosystems Mission Area.
    Keywords: Salt marsh ; Coastal forest ; Sea level rise ; Chesapeake Bay ; Marsh migration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stunz, E., Fetcher, N., Lavretsky, P., Mohl, J., Tang, J., & Moody, M. Landscape genomics provides evidence of ecotypic adaptation and a barrier to gene flow at treeline for the arctic foundation species Eriophorum vaginatum. Frontiers in Plant Science, 13, (2022): 860439, https://doi.org/10.3389/fpls.2022.860439.
    Description: Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth’s land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes. Tussock cottongrass (Eriophorum vaginatum L.) is a foundation species of the moist acidic tundra, whose potential decline due to competition from shrubs may affect ecosystem stability in the Arctic. We used double-digest Restriction Site-Associated DNA sequencing to identify genomic variation in 273 individuals of E. vaginatum from 17 sites along a latitudinal gradient in north central Alaska. These sites have been part of 30 + years of ecological research and are inclusive of a region that was part of the Beringian refugium. The data analyses included genomic population structure, demographic models, and genotype by environment association. Genome-wide SNP investigation revealed environmentally associated variation and population structure across the sampled range of E. vaginatum, including a genetic break between populations north and south of treeline. This structure is likely the result of subrefugial isolation, contemporary isolation by resistance, and adaptation. Forty-five candidate loci were identified with genotype-environment association (GEA) analyses, with most identified genes related to abiotic stress. Our results support a hypothesis of limited gene flow based on spatial and environmental factors for E. vaginatum, which in combination with life history traits could limit range expansion of southern ecotypes northward as the tundra warms. This has implications for lower competitive attributes of northern plants of this foundation species likely resulting in changes in ecosystem productivity.
    Description: This research was made possible by funding provided by NSF/PLR-1417645 to MM. The Botanical Society of America Graduate Student Research Award and the Dodson Research Grant from the Graduate School of the University of Texas at El Paso provided assistance to ES. The grant 5U54MD007592 from the National Institute on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH) provided bioinformatics resources and support of JM.
    Keywords: Arctic ; Climate change ; Eriophorum vaginatum ; Landscape genomics ; Environmental niche modeling ; Genotype-environment association analyses ; Refugia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scalpone, C. R., Jarvis, J. C., Vasslides, J. M., Testa, J. M., & Ganju, N. K. Simulated estuary-wide response of seagrass (Zostera marina) to future scenarios of temperature and sea level. Frontiers in Marine Science, 7, (2020): 539946, doi:10.3389/fmars.2020.539946.
    Description: Seagrass communities are a vital component of estuarine ecosystems, but are threatened by projected sea level rise (SLR) and temperature increases with climate change. To understand these potential effects, we developed a spatially explicit model that represents seagrass (Zostera marina) habitat and estuary-wide productivity for Barnegat Bay-Little Egg Harbor (BB-LEH) in New Jersey, United States. Our modeling approach included an offline coupling of a numerical seagrass biomass model with the spatially variable environmental conditions from a hydrodynamic model to calculate above and belowground biomass at each grid cell of the hydrodynamic model domain. Once calibrated to represent present day seagrass habitat and estuary-wide annual productivity, we applied combinations of increasing air temperature and sea level following regionally specific climate change projections, enabling analysis of the individual and combined impacts of these variables on seagrass biomass and spatial coverage. Under the SLR scenarios, the current model domain boundaries were maintained, as the land surrounding BB-LEH is unlikely to shift significantly in the future. SLR caused habitat extent to decrease dramatically, pushing seagrass beds toward the coastline with increasing depth, with a 100% loss of habitat by the maximum SLR scenario. The dramatic loss of seagrass habitat under SLR was in part due to the assumption that surrounding land would not be inundated, as the model did not allow for habitat expansion outside the current boundaries of the bay. Temperature increases slightly elevated the rate of summer die-off and decreased habitat area only under the highest temperature increase scenarios. In combined scenarios, the effects of SLR far outweighed the effects of temperature increase. Sensitivity analysis of the model revealed the greatest sensitivity to changes in parameters affecting light limitation and seagrass mortality, but no sensitivity to changes in nutrient limitation constants. The high vulnerability of seagrass in the bay to SLR exceeded that demonstrated for other systems, highlighting the importance of site- and region-specific assessments of estuaries under climate change.
    Description: This research was supported by the National Science Foundation Research Experience for Undergraduates Program (OCE-1659463), the Woods Hole Oceanographic Institution Summer Student Fellowship Program, the Barnegat Bay Partnership (through a US EPA Clean Water Act grant to Ocean County College; CE98212313), and the USGS Coastal and Marine Hazards/Resources Program. Although this project has been funded in part by the United States Environmental Protection Agency pursuant to a grant agreement with Ocean County College, it has not gone through the Agency’s publications review process and may not necessarily reflect the views of the Agency; therefore, no official endorsement should be assumed. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Seagrass (Zostera) ; Climate change ; Spatial model ; Sea level rise ; Temperature ; North American Atlantic Coast ; Regional ; Eelgrass (Zostera marina)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Grearson, A. G., Dugan, A., Sakmar, T., Sivitilli, D. M., Gire, D. H., Caldwell, R. L., Niell, C. M., Doelen, G., Wang, Z. Y., & Grasse, B. The lesser Pacific Striped Octopus, Octopus chierchiae: an emerging laboratory model. Frontiers in Marine Science, 8, (2021): 753483, https://doi.org/10.3389/fmars.2021.753483.
    Description: Cephalopods have the potential to become useful experimental models in various fields of science, particularly in neuroscience, physiology, and behavior. Their complex nervous systems, intricate color- and texture-changing body patterns, and problem-solving abilities have attracted the attention of the biological research community, while the high growth rates and short life cycles of some species render them suitable for laboratory culture. Octopus chierchiae is a small octopus native to the central Pacific coast of North America whose predictable reproduction, short time to maturity, small adult size, and ability to lay multiple egg clutches (iteroparity) make this species ideally suited to laboratory culture. Here we describe novel methods for multigenerational culture of O. chierchiae, with emphasis on enclosure designs, feeding regimes, and breeding management. O. chierchiae bred in the laboratory grow from a 3.5 mm mantle length at hatching to an adult mantle length of approximately 20–30 mm in 250–300 days, with 15 and 14% survivorship to over 400 days of age in first and second generations, respectively. O. chierchiae sexually matures at around 6 months of age and, unlike most octopus species, can lay multiple clutches of large, direct-developing eggs every ∼30–90 days. Based on these results, we propose that O. chierchiae possesses both the practical and biological features needed for a model octopus that can be cultured repeatedly to address a wide range of biological questions.
    Description: The cephalopod program at the Marine Biological Laboratory (MBL) was supported by NSF 1827509 and NSF 1723141 grants. CN received funding from HFSP RGP0042. DG and DS received funding and research support from the University of Washington Friday Harbor Laboratories. ZYW was supported by funds from the Whitman Center at the MBL.
    Keywords: Iteroparity ; Cephalopod ; Model organism ; Aquaculture ; Reproduction – mollusk ; Developmental biology ; Neurobiology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castagno, K., Ganju, N., Beck, M., Bowden, A., & Scyphers, S. How much marsh restoration is enough to deliver wave attenuation coastal protection benefits? Frontiers in Marine Science, 8, (2022): 756670, https://doi.org/10.3389/fmars.2021.756670.
    Description: As coastal communities grow more vulnerable to sea-level rise and increased storminess, communities have turned to nature-based solutions to bolster coastal resilience and protection. Marshes have significant wave attenuation properties and can play an important role in coastal protection for many communities. Many restoration projects seek to maximize this ecosystem service but how much marsh restoration is enough to deliver measurable coastal protection benefits is still unknown. This question is critical to guiding assessments of cost effectiveness and for funding, implementation, and optimizing of marsh restoration for risk reduction projects. This study uses SWAN model simulations to determine empirical relationships between wave attenuation and marsh vegetation. The model runs consider several different common marsh morphologies (including systems with channels, ponds, and fringing mudflats), vegetation placement, and simulated storm intensity. Up to a 95% reduction in wave energy is seen at as low as 50% vegetation cover. Although these empirical relationships between vegetative cover and wave attenuation provide essential insight for marsh restoration, it is also important to factor in lifespan estimates of restored marshes when making overall restoration decisions. The results of this study are important for coastal practitioners and managers seeking performance goals and metrics for marsh restoration, enhancement, and creation.
    Keywords: Salt marsh ; Restoration ; Coastal protection ; UVVR ; Cost effectiveness ; Vegetation ; Numerical model ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-31
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in O’Brien, J., McParland, E. L., Bramucci, A. R., Ostrowski, M., Siboni, N., Ingleton, T., Brown, M. V., Levine, N. M., Laverock, B., Petrou, K., & Seymour, J. The microbiological drivers of temporally dynamic Dimethylsulfoniopropionate cycling processes in Australian coastal shelf waters. Frontiers in Microbiology, 13, (2022): 894026, https://doi.org/10.3389/fmicb.2022.894026.
    Description: The organic sulfur compounds dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) play major roles in the marine microbial food web and have substantial climatic importance as sources and sinks of dimethyl sulfide (DMS). Seasonal shifts in the abundance and diversity of the phytoplankton and bacteria that cycle DMSP are likely to impact marine DMS (O) (P) concentrations, but the dynamic nature of these microbial interactions is still poorly resolved. Here, we examined the relationships between microbial community dynamics with DMS (O) (P) concentrations during a 2-year oceanographic time series conducted on the east Australian coast. Heterogenous temporal patterns were apparent in chlorophyll a (chl a) and DMSP concentrations, but the relationship between these parameters varied over time, suggesting the phytoplankton and bacterial community composition were affecting the net DMSP concentrations through differential DMSP production and degradation. Significant increases in DMSP were regularly measured in spring blooms dominated by predicted high DMSP-producing lineages of phytoplankton (Heterocapsa, Prorocentrum, Alexandrium, and Micromonas), while spring blooms that were dominated by predicted low DMSP-producing phytoplankton (Thalassiosira) demonstrated negligible increases in DMSP concentrations. During elevated DMSP concentrations, a significant increase in the relative abundance of the key copiotrophic bacterial lineage Rhodobacterales was accompanied by a three-fold increase in the gene, encoding the first step of DMSP demethylation (dmdA). Significant temporal shifts in DMS concentrations were measured and were significantly correlated with both fractions (0.2–2 μm and 〉2 μm) of microbial DMSP lyase activity. Seasonal increases of the bacterial DMSP biosynthesis gene (dsyB) and the bacterial DMS oxidation gene (tmm) occurred during the spring-summer and coincided with peaks in DMSP and DMSO concentration, respectively. These findings, along with significant positive relationships between dsyB gene abundance and DMSP, and tmm gene abundance with DMSO, reinforce the significant role planktonic bacteria play in producing DMSP and DMSO in ocean surface waters. Our results highlight the highly dynamic nature and myriad of microbial interactions that govern sulfur cycling in coastal shelf waters and further underpin the importance of microbial ecology in mediating important marine biogeochemical processes.
    Description: This research was supported by the Australian Research Council Grants FT130100218 and DP180100838 awarded to JS and DP140101045 awarded to JS and KP, as well as an Australian Government Research Training Program Scholarship awarded to JO’B.
    Keywords: DMSP ; DMS ; DLA ; Phytoplankton ; Bacteria ; qPCR ; 16S rRNA gene ; 18S rRNA gene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...