ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • InSAR
  • Elsevier Science Limited  (4)
  • Molecular Diversity Preservation International  (1)
Collection
Years
  • 1
    Publication Date: 2020-10-14
    Description: In the last decades, the increasing availability of comprehensive geodetic datasets has allowed for more detailed constraints on subsurface magma storage and conduits at several active volcanoes worldwide. Here, by using a large dataset of geodetic measurements collected between early January 2001 and August 2001, we identified at least six different deformation stages that allow us to quantify the surface deformation patterns before, during and after the 2001 Mt. Etna volcanic eruption. Our results are largely in agreement with previous works (e.g. the presence of a deep inflating source and a shallow dike located beneath the north-western and upper southern flanks of the volcano, respectively). However, we provide (1) finer resolution of the temporal activity of these magmatic sources, leading to (2) new evidence related to the evolution of the magmatic system and the mechanical response of the western flank, in particular during the pre-eruptive phase. Results and analysis show a clear change in the ground deformation pattern of the volcano in response to the 20–24 April 2001 seismic swarm that occurred beneath the western flank, evolving from a volcano-wide inflation to a slight deflation of the summit area. We suggest that the source responsible for the volcano-wide inflation, beginning in the fall of 2000, experienced a drastic reduction in the inflation rate in response to this seismic swarm. Moreover, we provide evidence for the presence of a new inflating source located beneath the upper southern flank at a depth of ~ 7.0 km bsl that triggered both the occurrence of the 20–24 April 2001 seismic swarm and led to the rapid ascent of magma upward to the surface after 12 July (the Lower Vents system was fed by fresh magma rising from this source). The presence of this inflating source is inferred by (1) seismological and volcanological observations coming from the 2001 eruption and (2) seismological constraints coming from a previous similar episode that occurred at Etna during the 1993–1998 period. Furthermore, both shallow deflations observed after the 20–24 April 2001 seismic swarm and during the first day of the eruption also could be due to the deflation of two adjacent portions of the same shallow (~ 2 km bsl) reservoir. Such reservoirs would feed the activity that occurred at the South-East Crater after January 2001 and the activity of the Upper Vents system during the July–August eruption, in agreement with petrochemical observations. Through an updated revision of the available data, we shed some light on the relevance of pre-eruptive activity patterns, an important element for an effective volcano monitoring.
    Description: Published
    Description: 108-121
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna eruption ; GPS ; InSAR ; Modelling ; Atmospheric correction ; Coulomb stress changes ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/ are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSARwith soil gas prospectingmethods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.
    Description: This work was funded by the DPC-INGV project “Flank”
    Description: Published
    Description: 27-40
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 ; Radon ; InSAR ; Faults ; Etna ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2017-04-03
    Description: The investigation of the fault rupture underlying earthquakes greatly improved thanks to the spread of radar images. Following pioneer applications in the eighties, Interferometry from Synthetic Aperture Radar (InSAR) gained a prominent role in geodesy. Its capability to measure millimetric deformations for wide areas and the increased data availability from the early nineties, made InSAR a diffused and accepted analysis tool in tectonics, though several factors contribute to reduce the data quality. With the introduction of analytical or numerical modeling, InSAR maps are used to infer the source of an earthquake by means of data inversion. Newly developed algorithms, known as InSAR time-series, allowed to further improve the data accuracy and completeness, strengthening the InSAR contribution even in the study of the inter- and post-seismic phase. In this work we describe the rationale at the base of the whole processing, showing its application to the New Zealand 2010-2011 seismic sequence.
    Description: Published
    Description: 178–181
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: restricted
    Keywords: InSAR ; Fault modeling ; Tectonics ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Analysis of 1549 DInSAR interferograms, covering the period from 2003 to 2010, has highlighted significant motion along the entire set of the active faults identified by advanced DInSAR analyses (i.e. Permanent Scatterers Features, PSF), affecting the Mount Etna volcano, in eastern Sicily. In the analysed period, the absence of significant seismicity producing co-seismic ground deformation suggests that the overall deformation that has been recognized on the interferograms is to be associated with interseismic, almost continuous creep which is, well documented along most of the active faults. According to field evidence, the structures should accumulate displacements resulting in their permanent visibility on the interferograms, progressively increases through time. This expected behaviour has been recognised only for part of the entire set of structures. Other tectonic features, in fact, show episodic appearances, alternating with periods of absence of ground displacement on the interferograms, simulating a stick-slip mechanism of deformation, conflicting with field evidence. This apparently incongruous behaviour can be interpreted as the result of topographic changes due to the combination of the tectonic displacements with related amounts of the differential erosion and deposition across the fault line. The comparison between the history of the appearances and the monthly rainfall in the region seems to demonstrate that these structures appear when one of the two interacting processes governing the topographic changes around the fault, i.e. tectonic vs. erosional, prevails over the other. Otherwise, the same structures are not evident on the interferograms when the two components are in balance.
    Description: Published
    Description: 128-137
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Description: restricted
    Keywords: fault ; slip rates ; InSAR ; ground deformation ; erosion ; volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We study land subsidence processes and the associated ground fissuring, affecting an active graben filled by thick unconsolidated deposits by means of InSAR techniques and fieldwork. On 21 September 2012, Ciudad Guzmán (Jalisco, Mexico) was struck by ground fissures of about 1.5 km of length, causing the deformation of the roads and the propagation of fissures in adjacent buildings. The field survey showed that fissures alignment is coincident with the escarpments produced on 19 September 1985, when a strong earthquake with magnitude 8.1 struck central Mexico. In order to detect and map the spatio-temporal features of the processes that led to the 2012 ground fissures, we applied InSAR multitemporal techniques to process ENVISAT-ASAR and RADARSAT-2 satellite SAR images acquired between 2003 and 2012. We detect up to 20 mm/year of subsidence of the northwestern part of Ciudad Guzmán. These incremental movements are consistent with the ground fissures observed in 2012. Based on interferometric results, field data and 2D numerical model, we suggest that ground deformations and fissuring are due to the presence of areal subsidence correlated with variable sediment thickness and differential compaction, partly driven by the exploitation of the aquifers and controlled by the distribution and position of buried faults.
    Description: Published
    Description: 8610-8630
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: InSAR ; ground subsidence ; buried faults ; ground fissuring ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...