ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics  (2)
  • Elsevier B.V. All rights reserved.  (1)
  • Nature Publishing Group  (1)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: The equilibrium between a 4-component H2O–CO2–SO2–H2S gas phase and a 13-component silicate liquid made of 10 major oxides plus dissolved H2O, CO2, and S, is investigated by means of calculations involving homogeneous reactions in the gas phase and heterogeneous gas–liquid saturation modeling based on classical Gibbs thermodynamics and Toop–Samis polymeric approach. Sulfur is assumed to be present in two different oxidation states in the gas (sulfur dioxide and hydrogen sulfide) and liquid (sulfide and sulfate ions) phase, implying a dependence of the equilibrium conditions on the redox state of the system. Sulfur-bearing solid phases and Fe–O–S immiscible liquid are not accounted for in the modeling. The thermodynamic model is an extension of the one presented in Moretti et al. [Moretti R., Papale P. and Ottonello, G., 2003. A model for the saturation of C–H–O–S fluids in silicate melts. In: Oppenheimer C., Pyle D.M., Barclay J. (eds.) Volcanic Degassing, Geol. Soc. London Spec. Publ., 213, 81–101.] to account for iron speciation at high pressure and dissolved water contents. The consequences on the equilibrium conditions of different assumptions concerning the effective redox buffer in magma are examined through calculations made on two different liquids of shoshonitic and rhyolitic composition, determining the equilibrium conditions on the basis of (i) constant ferric to ferrous mass ratio, (ii) constant hydrogen sulfide to sulfur dioxide fugacity ratio, and (iii) constant oxygen fugacity relative to a solid–gas buffer (DNNOF0.5). Following Giggenbach [Giggenbach, W.F., 1996. Chemical composition of volcanic gases. In: Scarpa R., Tilling R.I. (eds.) Monitoring and Mitigation of Volcano Hazards, Springer-Berlin, 202–226.], the first two buffers are expected to be effective in basaltic and rhyolitic magmas, respectively, according to the most abundant reservoir of redox couples represented by iron in basalts, and sulfur in rhyolite. The model results show strongly nonlinear dependence of the equilibrium compositions in the gas and liquid phases, as well as of the oxidation state of the system, on the assumed redox buffer. Furthermore, for each assumed redox buffer, the pressure dependence of phase composition and oxidation state of the system also shows strongly nonlinear trends. The largest compositional differences are shown by sulfur species; however, the concentrations of water and carbon dioxide in the two phases at equilibrium also show nonnegligible dependence on the redox conditions. For each assumed redox buffer, sulfur dioxide in the gas phase, and sulfate ions in the liquid phase, are found to be present in appreciable quantities or represent the dominating sulfur species even at the largest employed pressures approaching 500 MPa. The more reliable redox buffers represented by constant ferric to ferrous mass ratio for shoshonite, and constant hydrogen sulfide to sulfur dioxide fugacity ratio for rhyolite, show that oxygen fugacity paths during magma depressurization strongly deviate from those parallel to NNO. Therefore, the characterization of the oxidation state in depressurizing magmas on the basis of deviations from solid buffers (usually NNO or QFM) may not be appropriate.
    Description: Published
    Description: 265– 280
    Description: partially_open
    Keywords: Silicate melts ; Redox buffer ; Saturation ; Volatile exsolution ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 483 bytes
    Format: 1549881 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...