ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4,913)
  • Elsevier  (4,913)
Collection
Language
  • 1
    Publication Date: 2023-11-21
    Description: The world's forests store large amounts of carbon (C), and growing forests can reduce atmospheric CO2 by storing C in their biomass. This has provided the impetus for world-wide tree planting initiatives to offset fossil-fuel emissions. However, forests interact with their environment in complex and multifaceted ways that must be considered for a balanced assessment of the value of planting trees. First, one needs to consider the potential reversibility of C sequestration in trees through either harvesting or tree death from natural factors. If carbon storage is only temporary, future temperatures will actually be higher than without tree plantings, but cumulative warming will be reduced, contributing both positively and negatively to future climate-change impacts. Alternatively, forests could be used for bioenergy or wood products to replace fossil-fuel use which would obviate the need to consider the possible reversibility of any benefits. Forests also affect the Earth's energy balance through either absorbing or reflecting incoming solar radiation. As forests generally absorb more incoming radiation than bare ground or grasslands, this constitutes an important warming effect that substantially reduces the benefit of C storage, especially in snow-covered regions. Forests also affect other local ecosystem services, such as conserving biodiversity, modifying water and nutrient cycles, and preventing erosion that could be either beneficial or harmful depending on specific circumstances. Considering all these factors, tree plantings may be beneficial or detrimental for mitigating climate-change impacts, but the range of possibilities makes generalisations difficult. Their net benefit depends on many factors that differ between specific circumstances. One can, therefore, neither uncritically endorse tree planting everywhere, nor condemn it as counter-productive. Our aim is to provide key information to enable appropriate assessments to be made under specific circumstances. We conclude our discussion by providing a step-by-step guide for assessing the merit of tree plantings under specific circumstances.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-29
    Description: Seaweed farming contributes substantial amounts of organic carbon to the ocean, part of which can be locked for a long term in the ocean and perform the function of ocean carbon sequestration, and the other part can be converted into inorganic carbon through microbial mineralization and aerobic respiration, affecting the pCO2, pHT and dissolved oxygen of seawater. It is generally believed that seaweed farming will cause the seawater to become a sink of CO2 due to carbon fixation by macroalgal photosynthesis. However, little attention has been paid to the fact that seaweed farming environment may sometimes become a source rather than a sink of CO2. Here, through in-situ mesocosm cultivation experiments and eight field investigations covering different kelp growth stages in an intensive farming area in China, we found that compared with the surrounding seawater without kelps, the seawater at the fast-growth stage of kelp was a sink of CO2 (pCO2 decreased by 17−73 μatm), but became a source of CO2 at the aging stage of kelp (pCO2 increased by 20−37 μatm). Concurrently, seawater pHT experienced a transition from increase (by 0.02−0.08) to decline (by 0.03−0.04). In-situ mesocosm cultivation experiments showed that the positive environmental effects (i.e., pCO2 decrease and pHT increase) induced by kelps at the early growth stage could be offset within only 3 days at the late-growth and aging stages. The release of dissolved organic carbon by kelps at the late growth stage increased significantly, supporting the enhancement in microbial abundance and respiration, which was manifested by the remarkable decrease in seawater dissolved oxygen, ultimately leading to CO2 release exceeding photosynthetic CO2 absorption. This study suggests that mature farmed kelps should be harvested in time to best utilize their carbon sink function and environmental benefits, which has guiding significance for the rational management of seaweed farming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-06
    Description: Highlights: • Inhibitory potential of eelgrass microbiome against aquatic and fecal pathogens • Isolation of epiphytes and endophytes associated with eelgrass leaves and roots • Particularly leaf epibiotic bacteria exhibit significant antimicrobial activity. • Rich secondary metabolite composition by untargeted metabolomics • Potential involvement of eelgrass microbiome in seagrass ecosystem services Seagrass meadows provide crucial ecosystem services for coastal environments and were shown to reduce the abundance of waterborne pathogens linked to infections in humans and marine organisms in their vicinity. Among potential drivers, seagrass phenolics released into seawater have been linked to pathogen suppression, but the potential involvement of the seagrass microbiome has not been investigated. We hypothesized that the microbiome of the eelgrass Zostera marina, especially the leaf epiphytes that are at direct interface between the seagrass host and the surrounding seawater, inhibit waterborne pathogens thereby contributing to their removal. Using a culture-dependent approach, we isolated 88 bacteria and fungi associated with the surfaces and inner tissues of the eelgrass leaves (healthy and decaying) and the roots. We assessed the antibiotic activity of microbial extracts against a large panel of common aquatic, human (fecal) and plant pathogens, and mined the metabolome of the most active extracts. The healthy leaf epibiotic bacteria, particularly Streptomyces sp. strain 131, displayed broad-spectrum antibiotic activity superior to some control drugs. Gram-negative bacteria abundant on healthy leaf surfaces, and few endosphere-associated bacteria and fungi also displayed remarkable activities. UPLC-MS/MS-based untargeted metabolomics analyses showed rich specialized metabolite repertoires with low annotation rates, indicating the presence of many undescribed antimicrobials in the extracts. This study contributes to our understanding on microbial and chemical ecology of seagrasses, implying potential involvement of the seagrass microbiome in suppression of pathogens in seawater. Such effect is beneficial for the health of ocean and human, especially in the context of climate change that is expected to exacerbate all infectious diseases. It may also assist future seagrass conservation and management strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-18
    Description: Total alkalinity (TA) is an important variable of the ocean carbonate system. In coastal oceans, carbonate system dynamics are controlled by a range of processes including photosynthesis and respiration, calcification, mixing of water masses, continental inputs, temperature changes, and seasonal upwelling. Assessments of diel, seasonal and interannual variations in TA are required to understand the carbon cycle in coastal oceans. However, our understanding of these variations remains underdeveloped due to limitations in observational techniques. Autonomous TA measurements are therefore required. In this study, an in situ TA analyzer (ISA-TA) based on a single-point titration with spectrophotometric pH detection was deployed in Tong'an Bay, Xiamen, China, over a five-month period in 2021 to determine diel and seasonal TA variations. The TA observations were combined with an artificial neural network (ANN) model to construct TA prediction models for this area. This provided a simple method to investigate TA variations in this region and was applied to predict surface water TA between March and April 2021. The in situ TA observations showed that TA values in Tong'an Bay varied within a range from 1931 to 2294 μmol kg−1 over the study period, with low TA in late winter, early summer and late summer, and high TA in early winter. The TA variations in late summer and early winter were mainly controlled by mixing of water bodies. The diel variations of TA were greatly determined by tides, with a diel amplitude of 9 to 247 μmol kg−1. The ANN model used temperature, salinity, chlorophyll, and dissolved oxygen to estimate TA, with a root-mean-square error (RMSE) of ∼14 μmol kg−1, with salinity as the input variable with the greatest weight. The approach of combining ISA-TA observations with an ANN model can be extended to study the carbonate system in other coastal regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-17
    Description: Highlights • SPM concentration and organic fractions are analyzed in coastal-offshore gradients • Diagnostic model of SPM allows separating fresh, labile from less reactive PON • Analysis of PON fractions reveals a characteristic area, the transition zone • There, particle settling is enhanced, fostering their transport back to the coast, which controls the fate of organic matter • The transition zone is generally confined to water depths below 20 m Abstract Identifying the mechanisms that contribute to the variability of suspended particulate matter concentrations in coastal areas is important but difficult, especially due to the complexity of physical and biogeochemical interactions involved. Our study addresses this complexity and investigates changes in the horizontal spread and composition of particles, focusing on cross-coastal gradients in the southern North Sea and the English Channel. A semi-empirical model is applied on in situ data of SPM and its organic fraction to resolve the relationship between organic and inorganic suspended particles. The derived equations are applied onto remote sensing products of SPM concentration, which provide monthly synoptic maps of particulate organic matter concentrations (here, particulate organic nitrogen) at the surface together with their labile and less reactive fractions. Comparing these fractions of particulate organic matter reveals their characteristic features along the coastal-offshore gradient, with an area of increased settling rate for particles generally observed between 5 and 30 km from the coast. We identify this area as the transition zone between coastal and offshore waters with respect to particle dynamics. Presumably, in that area, the turbulence range and particle composition favor particle settling, while hydrodynamic processes tend to transport particles of the seabed back towards the coast. Bathymetry plays an important role in controlling the range of turbulent dissipation energy values in the water column, and we observe that the transition zone in the southern North Sea is generally confined to water depths below 20 m. Seasonal variations in suspended particle dynamics are linked to biological processes enhancing particle flocculation, which do not affect the location of the transition zone. We identify the criteria that allow a transition zone and discuss the cases where it is not observed in the domain. The impact of these particle dynamics on coastal carbon storage and export is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-30
    Description: Coastal German waters contain about 1.6 million tons of dumped munition, mostly left after World Wars. This study investigated the benthic macrofauna around the 'Kolberger Heide' munition dumpsite (Baltic Sea). A total of 93 macrofauna grab samples were obtained in the proximity of the munition dumpsite and in reference areas. Environmental variables analysed included the latitude/longitude, depth, terrain ruggedness, sediment grainsize distribution, TNT concentration in the bottom water and distance to the centre of munition dumpsite. The overall abundance, biomass and diversity varied among these groups, though demonstrated no clear differences regarding the proximity to munition and modelled near-bottom dissolved TNT. Among individual taxa, however, a total of 16 species demonstrated significant correlation with TNT concentration. Moreover, TNT may serve as a predictor for the distribution of three species: molluscs Retusa truncatula, Varicorbula gibba and polychaete Spio goniocephala. Possible reasons for the species distribution including their biological traits are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-30
    Description: Highlights • Global primitive arc lavas (Mg# ≥60) display notable δ49/47Ti heterogeneity. • Residual rutile imposes high δ49/47Ti of 0.24 ± 0.06 ‰ on hydrous, silicic slab melts. • Primitive Aleutian rhyodacites have the same δ49/47Ti as predicted for slab melts. • A variably diluted signature of slab melts is found in all eight subduction zones. • A slab melt component is required to generate silicic primitive arc lavas. Abstract It is still a matter of intense debate to what extent partial melting of the subducting slab contributes to arc magmatism in modern subduction zones. In particular, it is difficult to differentiate between silicate melts formed by partial melting of the slab, and aqueous fluids released during subsolidus dehydration as the main medium for slab-to-mantle wedge mass transfer. Here we use δ49/47Ti (the deviation in 49Ti/47Ti of a sample to the OL-Ti reference material) as a robust geochemical tracer of slab melting. Hydrous partial melting of subducted oceanic crust and the superjacent sedimentary layer produces silicic melts in equilibrium with residual rutile. Modelling shows that such silicic slab melts have notably higher δ49/47Ti (+0.24 ± 0.06 ‰) than their protolith due to the strong preference of rutile for the lighter isotopes of Ti. In contrast, even highly saline fluids cannot carry Ti from the slab and hence hydrous peridotite partial melts have δ49/47Ti similar to mid-ocean ridge basalts (MORB; ca. 0 ‰). Primitive (Mg# ≥60) arc lavas from eight subduction zones that are unaffected by fractional crystallisation of Fe-Ti oxides show a more than tenfold larger variation in δ49/47Ti than found in MORB. In particular, primitive arc lavas display a striking correlation between SiO2 content and δ49/47Ti that ranges from island arc basalts overlapping with MORB, to primitive rhyodacites with δ49/47Ti up to 0.26 ‰ erupted in the western Aleutian arc. The elevated δ49/47Ti of these primitive arc lavas provides conclusive evidence for partial melts of the slab as a key medium for mass transfer in subduction zones. The Aleutian rhyodacites represent a rare example of slab melts that have traversed the mantle wedge with minimal modification. More commonly, slab melts interact with the mantle wedge to form an array of primary arc magmas that are a blend of slab- and peridotite-derived melt. We identify primitive arc lavas with a clearly resolvable slab melt signature in all eight subduction zone localities, confirming that slab melting is prevalent in modern subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-30
    Description: Highlights • An event-scale, complete lithostratigraphic column for the Miocene BFVA was created through extensive field volcanology. • Field volcanology was supplemented by volcanic glass geochemistry to separate the eruptions. • An example is presented how to undertake lithostratigraphy-based classification in poorly preserved, deeply eroded volcanic terrains. • In the ancient BFVA landscape, sea cover during eruptions and terrestrial deposition is evident. Abstract This study documents the volcanic evolution of the Miocene silicic Bükk Foreland Volcanic Area (BFVA), Northern Hungary (Central Europe) at an event-scale. The BFVA is a deeply eroded and dissected volcanic field dominated by multiple, several 10-m thick, valley-filling silicic ignimbrite units, which are chemically and texturally very similar to each other. Hence, establishing lateral correlation is a real challenge due to the sporadic and small-scale outcrops and lack of stratotypes. Detailed field observations allowed us to identify eleven lithological members including fourteen eruption events and establish a nearly complete lithostratigraphic correlation between fifteen outcrops across the BFVA. Primary pyroclastic material of each member was sampled, and volcanic glass was geochemically analyzed for major and trace element composition. The geochemical results confirm the field-based classification of the members and enable the correlation of distinct outcrops. The major and trace element composition of the glassy pyroclasts of each member of the BFVA served as basis to create a field-wide chemical reference database for regional correlational studies. Here, a new lithostratigraphic classification scheme (consisting of one lithostratigraphic formation and eleven members) is presented, which reflects the challenges unraveling the stratigraphy of ancient volcanic terrains. The field-based event-scale lithostratigraphy of the BFVA suggests a wet, partly sea-covered depositional environment in the close vicinity of the eruption centers providing favorable conditions to ‘fuel’ silicic explosive phreatomagmatism. On the contrary, paleosol horizons formed after almost each major eruption event or sequence suggests an overall near-coast terrestrial environment for the BFVA, where the emplacement of the pyroclastic material occurred.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-01
    Description: Regime shifts in the diatom–dinoflagellate composition have occurred in the Baltic Sea (BS) and Bohai Sea (BHS) under eutrophication and have affected the entire coastal ecosystem, damaging the regulatory, provisioning, cultural, and supporting service functions of marine ecosystems. Therefore, finding a solution to restore the balance of phytoplankton community composition and mitigate eutrophication is of utmost importance. In this study, the Driver (per capita gross domestic product)-Pressure (terrestrial inputs)-State (seawater environmental parameters)-Impact (proportions of diatoms and dinoflagellates)-Response (eutrophication governance projects) framework served as a guide for our analysis of the causal relationship among various environmental components in the coastal system. The relevant data in BS and BHS spanning from the 1950s to the 2010s were collected and used to construct a diatom–dinoflagellate composition single index, which allowed us to identify the shifts in regimes (mutation points and phases) of the diatom–dinoflagellate composition and environmental factors using sequential t-test analysis. We also identified key environmental factors that moderated the diatom–dinoflagellate composition using redundancy analysis and analyzed the partial effects of the main environmental factors on the diatom–dinoflagellate composition using a generalized additive model. Finally, the regulation of the eutrophication governance investment on diatom–dinoflagellate composition was investigated. We found that (1) BS is a “time machine,” with coastal eutrophication governance and regime shift of diatom–dinoflagellate composition and environmental factors two decades earlier than that in BHS; (2) in BS, the key moderation factor of diatom proportion is SiO3-Si and those of dinoflagellates are sea surface salinity and N:P ratio; in BHS, the key moderation factors of diatom proportion are PO4-P and Si:N ratio and those of dinoflagellate are dissolved inorganic nitrogen and N:P and Si:P ratios; (3) it is projected that BHS will enter its recovery phase from eutrophication after mid-2020s. In summary, the N/P/Si stoichiometric relationships should be given greater consideration, with the exception of the “dose-response” relationship in both sea areas. Our results indicate an urgent need for an improved mechanistic understanding of how phytoplankton biodiversity changes in response to changes in nutrient load and how we should ultimately deal with the challenges that arise.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-05
    Description: A La Niña condition in the equatorial Pacific began in the early summer of 2020 and has lasted more than two and a half years (referred to as the 2020 La Niña hereafter). Predicting its temporal evolution had attracted a lot of attention. Considering the possible phase-locked impact of the 11-year solar cycle on the tropical Pacific variability, in this study the authors present the possible modulations by the solar cycle 25 (SC25) started from December 2019, on the future temporal evolution of the 2020 La Niña. Based on statistical features of historical solar cycles, the authors propose three possible scenarios of the timing of the SC25 maximum year and discuss its possible impacts on the temporal evolution of the 2020 La Niña in the next two years. The ongoing ascending phase of SC25 dampens the development of a super El Niño condition to some extent in 2023.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-12
    Description: Highlights: • Change in sea urchin species composition from RBC and NRBC habitats. • Sand coverage is an important factor that influences the sea urchin species composition. • The relationship between sea urchins and their habitat is species-specific. Sea urchins are important components of marine ecosystems and can act as bioindicators, reflecting the health of reefs. The spatial patterns of sea urchins are largely shaped by the type of habitat. In Hong Kong, coral communities are divided into two distinct types: reef -building coral habitats and non -reef -building coral habitats. In summer 2020, a qualitative survey was conducted using SCUBA at 56 sites across eastern and western waters, recording a total of 11 species from 6 families of sea urchins. Out of these 56 sites, 14 were selected for a quantitative survey to investigate the relationship between sea urchin assemblages and the two types of coral habitat. We found that the species composition of sea urchins differed significantly between the two habitats, and the presence of sand was a critical factor influencing the species composition of sea urchins. Sand coverage had a positive effect on Salmasic sphaeroides abundance but a negative effect on the abundance of Diadema setosum and Heliocidaris crassispina. The distribution of sea urchins across different degrees of sand coverage may be associated with food availability or species -specific adaptive behaviour, likely due to niche preferences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-12
    Description: Highlights • East Asian climate evolution was dependent on the latitude of the proto-Tibetan Plateau in the deep past; • Global warming induced wetting at mid-latitude East Asian in the mid-Cretaceous; • The proto-Tibetan Plateau uplift led to drying in the subtropical East Asian in the mid-Cretaceous. Abstract Sedimentary records indicate that subtropical and mid-latitude East Asia exhibited considerable drying and wetting, respectively, during the mid-Cretaceous, which is considered to be relevant to much higher atmospheric carbon dioxide (pCO2) concentrations and/or proto-Tibetan Plateau (proto-TP) uplift. In order to explore and compare their roles on the East Asian climate evolution, we conducted simulations of the mid-Cretaceous climate system with different atmospheric pCO2 levels and varying topographies. The results show that both factors had significant influences on the East Asian climate. As the increase in atmospheric pCO2 levels from ∼560–1120 ppmv to ∼1120–2240 ppmv, the precipitation increases considerably over mid-latitude East Asia, but only small changes in the subtropical portion of East Asia occur. Simultaneously, the effects of the proto-TP uplift are opposite to those of global warming trend during that period. Generally, it leads to a precipitation decrease over subtropical East Asia, but rather minor changes over mid-latitude East Asia. These changes are qualitatively consistent with the deduction based on the geological records, but the magnitudes of the modeled precipitation changes are relatively smaller. Therefore, we can conclude that the subtropical East Asian drying during the mid-Cretaceous can be partly explained by the proto-TP uplift, while the mid-latitude East Asian wetting was partly due to global warming. However, additional factor(s) also played a significant role in the East Asian climate evolution during the mid-Cretaceous.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-12
    Description: Carbon dioxide removal (CDR) – the creation, enhancement, and upscaling of carbon sinks – has become a pillar of national and corporate commitments towards Net Zero emissions, as well as pathways towards realizing the Paris Agreement's ambitious temperature targets. In this perspective, we explore CDR as an emerging issue of Earth System Governance (ESG). We draw on the results of a workshop at the 2022 Earth System Governance conference that mapped a range of actors, activities, and issues relevant to carbon removal, and refined them into research questions spanning four intersecting areas: modeling and systems assessment, societal appraisal, policy, and innovation and industry. We filter these questions through the five lenses of the ESG framework and highlight several key ‘cross-cutting’ issues that could form the basis of an integrated ESG research agenda on CDR.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-12
    Description: Highlights • Cu complexation was measured for the first time in the Fram Strait region. • Cu-binding ligand concentrations and binding strength varied longitudinally in the Fram Strait. • More than 99 % of dCu was organically complexed by strong ligands. • On the Greenland shelf the Transpolar Drift and the coastal processes were the main sources of Cu ligands. Abstract The Fram Strait represents the major gateway of Arctic Ocean waters towards the Nordic Seas and North Atlantic Ocean and is a key region to study the impact of climate change on biogeochemical cycles. In the region, information about trace metal speciation, such as copper, is scarce. This manuscript presents the concentrations and conditional stability constants of copper-binding ligands (LCu and log KcondCu2+L) in the water column of Fram Strait and the Greenland shelf (GEOTRACES cruise GN05). Cu-binding ligands were analysed by Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) using salicylaldoxime (SA) as competitive ligand. Based on water masses and the hydrodynamic influences, three provinces were considered (coast, shelf, and Fram Strait) and differences were observed between regions and water masses. The strongest variability was observed in surface waters, with increasing LCu concentrations (mean values: Fram Strait = 2.6 ± 1.0 nM; shelf = 5.2 ± 1.3 nM; coast = 6.4 ± 0.8 nM) and decreasing log KcondCu2+L values (mean values: Fram Strait = 15.7 ± 0.3; shelf = 15.2 ± 0.3; coast = 14.8 ± 0.3) towards the west. The surface LCu concentrations obtained above the Greenland shelf indicate a supply from the coastal environment to the Polar Surface Water (PSW) which is an addition to the ligand exported from the central Arctic to Fram Strait. The significant differences (in terms of LCu and log KcondCu2+L) between shelf and coastal samples were explained considering the processes which modify ligand concentrations and binding strengths, such as biological activity in sea-ice, phytoplankton bloom in surface waters, bacterial degradation, and meltwater discharge from 79NG glacier terminus. Overall, the ligand concentration exceeded those of dissolved Cu (dCu) and kept the free copper (Cu2+) concentrations at femtomolar levels (0.13–21.13 fM). This indicates that Cu2+ toxicity limits were not reached and dCu levels were stabilized in surface waters by organic complexes, which favoured its transport to the Nordic Seas and North Atlantic Ocean and the development of microorganism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-14
    Description: The increasing global demand for seafood, coupled with the limitations of current fish stocks and aquaculture practices, requires the development of sustainable aquaculture solutions. In this context, this study explores the potential of a novel cage technology - Flow2Vortex - for the cultivation of jellyfish, a low-trophic-level organism with increasing market demand. The unique cage design creates a laminar and circular water flow, providing optimal conditions for cultivating fragile planktonic species. Indoor experiments demonstrated the successful growth of jellyfish in the cage, with growth rates of up to 11.6% per day. In addition, field tests in open waters confirmed the cage's ability to maintain a diffuse and controlled flow inside, even under strong external currents. The cage also maintained significantly higher zooplankton concentrations than the surrounding environment, offering a consistent food source for the cultivated jellyfish. These findings highlight the potential of the Flow2Vortex cage for scalable indoor and outdoor cultivation of low-trophic-level organisms, such as jellyfish, contributing to the diversification and sustainability of aquaculture practices.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
  • 17
  • 18
    Publication Date: 2024-02-22
    Description: Highlights • More diverse non-native taxa generally include more economically costly species. • Chordates, nematodes and pathogens are among significantly over-represented taxa. • Monetary cost magnitude links positively to numbers of costly invasive species. • Costs are biased towards a few ‘hyper-costly’ invasive species groups. • Future invasion rates will continue to harbour new economically costly species. Abstract A dominant syndrome of the Anthropocene is the rapid worldwide spread of invasive species with devastating environmental and socio-economic impacts. However, the dynamics underlying the impacts of biological invasions remain contested. A hypothesis posits that the richness of impactful invasive species increases proportionally with the richness of non-native species more generally. A competing hypothesis suggests that certain species features disproportionately enhance the chances of non-native species becoming impactful, causing invasive species to arise disproportionately relative to the numbers of non-native species. We test whether invasive species with reported monetary costs reflect global numbers of established non-native species among phyla, classes, and families. Our results reveal that numbers of invasive species with economic costs largely reflect non-native species richness among taxa (i.e., in 96 % of families). However, a few costly taxa were over- and under-represented, and their composition differed among environments and regions. Chordates, nematodes, and pathogenic groups tended to be the most over-represented phyla with reported monetary costs, with mammals, insects, fungi, roundworms, and medically-important microorganisms being over-represented classes. Numbers of costly invasive species increased significantly with non-native richness per taxon, while monetary cost magnitudes at the family level were also significantly related to costly invasive species richness. Costs were biased towards a few ‘hyper-costly’ taxa (such as termites, mosquitoes, cats, weevils, rodents, ants, and asters). Ordination analysis revealed significant dissimilarity between non-native and costly invasive taxon assemblages. These results highlight taxonomic groups which harbour disproportionately high numbers of costly invasive species and monetary cost magnitudes. Collectively, our findings support prevention of arrival and containment of spread of non-native species as a whole through effective strategies for mitigation of the rapidly amplifying impacts of invasive species. Yet, the hyper- costly taxa identified here should receive greater focus from managers to reduce impacts of current invasive species.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-23
    Description: Highlights: • Ca. 418 ka Pauzhetka tephra from South Kamchatka was found in 11 marine sediment cores. • New major and trace element analyses allow identification of tephra glasses. • K/Ti and K/Fe maxima mark the Pauzhetka tephra presence in marine sediments. • The tephra occurs at Marine Isotope Stages 12 to 11c and below the Bermuda excursion. • The revised ash dispersal covers vast areas in the NW Pacific and Okhotsk Sea. Abstract: The distal Pauzhetka tephra, formed by a large caldera-forming volcanic eruption in South Kamchatka, has been identified in eleven recently recovered marine sediment cores based on major and trace element compositions of tephra glass. Ten SO264 cores form a transect along the Emperor Seamount Chain (ESC) in the Northwest (NW) Pacific between ∼50.3° and ∼45°N, 800–1200 km southeast of the Pauzhetka caldera. One additional core LV28-41-4 was retrieved in the Okhotsk Sea, ∼600 km west of the caldera. The Pauzhetka tephra glass shards have a characteristic medium-K rhyolite composition and trace element content compatible with the rear-arc position of the source volcano that ensures their identification. In the NW Pacific SO264 cores, the tephra is preserved as layers in cores 33, 47, 49, 53, 55, 56 and 62, as a lens in core 45, and as cryptotephra in cores 57 and 66. It forms a cryptotephra in the Okhotsk Sea core LV28-41-4. Distinctively high XRF-retrieved K/Ti and K/Fe ratios compared to those for the host sediments help identify the Pauzhetka tephra. According to our refined stable oxygen isotope (δ18O)- and magneto-stratigraphy of two studied and two reference cores, the Pauzhetka tephra occurs within a local δ18O maximum during a transition from marine isotope stage 12 to 11c (Termination V) and below a paleointensity minimum referred to as the Bermuda excursion, at ca. 418 ka. Using the tephra age as an isochron, we show that average linear sedimentation rates decrease southward along a transect of the SO264 cores, except in core 55. It partially reflects an intensification of mid-depth currents causing winnowing, erosion or non-deposition along the ESC over the past 418 kyr. An increased linear sedimentation rate in core 55, recovered from the southern leeward side of the Minnetonka Seamount, appears to record the pelagic accumulation protected from the mid-depth current influence. Our findings expand the former ash dispersal area farther southeast in the NW Pacific and southwest in the Okhotsk Sea. The new data on the tephra thickness supports the axis direction of the fallout zone southeast of the Pauzhetka caldera. Our results suggest the Pauzhetka tephra as a key middle Pleistocene isochron for the stratigraphy and correlation of the NW Pacific and Okhotsk Sea sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-27
    Description: Highlights: • The interactions between vortices in a four-vortex flow field using a rotating water tank. • Driven by the strain field, non-ideal vortices stretch along the centerline, and manifest an asymmetric stretching pattern. • Non-ideal vortices disperse vorticity, accumulate filaments, and exhibit distinctive variations in anti-symmetric vorticity distribution, impacting respective merging efficiency. Abstract: Oceanic vortex merging is an important physical process for the vortex evolution and its impact on marine environment. However, limitation of the in-situ oceanic observational data of vortex merging inhabits its better understanding. This study investigates the interactions between non-ideal vortices in a four-vortex flow field in a rotating tank. We examine the merging stages of anticyclonic vortices, influenced by two other cyclonic vortices and their respective dynamical behaviors and quantify the effects of merging on vortex characteristics. The results indicate a strong shear flow between two counter-rotating vortices, which accelerates the motion of the anticyclonic vortex, while cyclonic ones exhibit greater stability. Subsequently, different stages of non-ideal vortex merging in a co-rotating framework are defined, primarily the encircling stage, rapid approaching stage, and merging vortex stage. In addition, we quantify and compare variations in morphological parameters and anti-symmetric vorticity distribution of non-ideal vortices across these stages. The stretching of vortices primarily occurs along the line connecting their centers due to the strain field exerted by neighboring vortices, resulting in an asymmetric stretching pattern in the interactions among non-ideal vortices. Furthermore, during the merging process, non-ideal vortices disperse vorticity outward and accumulate vortex filaments in the surrounding environment, leading to distinctive variations in anti-symmetric vorticity distribution, affecting their respective merging efficiency.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-02-28
    Description: Marine imaging studies have unique constraints on the data collected requiring a tool for defining the biological scope to facilitate data discovery, quality evaluation, sharing and reuse. Defining the ‘target population’ is way of scoping biological sampling or observations by setting the pool of organisms to be observed or sampled. It is used in survey design and planning, to determine statistical inference, and is critical for data interpretation and reuse (both images and derived data). We designed a set of attributes for defining and recording the target population in biological studies using marine photography, incorporating ecological and environmental delineation and marine imaging method constraints. We describe how this definition may be altered and recorded at different phases of a project. The set of attributes records the definition of the target population in a structured metadata format to enhance data FAIRness. It is designed as an extension to the image FAIR Digital Objects metadata standard, and we map terms to other biological data standards where possible. This set of attributes serves a need to update ecological metadata to align with new remotely-sensed data, and can be applied to other remotely-sensed ecological image data.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-02-29
    Description: Highlights • Negligible Ba removal observed in the Rainbow hydrothermal system. • Insignificant modification of Ba isotope composition of the vent fluid endmember. • Rainbow vent introduces isotopically light Ba (−0.17) to the deep Atlantic Ocean. • Hydrothermal inputs contribute 4.6 ± 2.2 Gmol/yr Ba to the ocean. Abstract The marine barium (Ba) cycle is closely connected to the short-timescale carbon cycle, and Ba serves as a valuable paleo proxy for export production, ocean alkalinity, and terrestrial inputs. However, the marine Ba budget is poorly constrained, particularly regarding the fluxes of hydrothermally sourced Ba, which hinders our understanding of the Ba cycle and use of Ba-based proxies. Recent studies have suggested a modern source-sink imbalance of Ba isotopes in the global ocean, with sources being overall isotopically heavier than the sinks, and the hydrothermal Ba inputs were considered isotopically heavy sources. In this study, we present the first investigation of Ba and its isotopes in a non-buoyant hydrothermal plume based on dissolved and particulate samples collected from the Rainbow hydrothermal vent field on the Mid-Atlantic Ridge. Our data reveal strong hydrothermal signals at near-field stations, as evidenced by helium isotopes, accompanied by elevated concentrations of dissolved and particulate Ba. Dissolved Ba isotope compositions (δ138Ba) in hydrothermally influenced deep waters (∼0.3 ) are lighter than at similar depths of far-field stations (∼0.45 ) in the Atlantic Ocean. The concentrations and isotopic compositions of dissolved and labile particulate Ba in the non-buoyant hydrothermal plume can be explained by conservative mixing between a Ba-enriched hydrothermal component and North Atlantic Deep Water. By extrapolating the correlations to the vent fluid endmember, our results suggest that there is negligible removal of Ba, and insignificant modification of Ba isotopic signatures, from the vent fluid endmember to the non-buoyant hydrothermal plume. This indicates that the Rainbow hydrothermal system introduces isotopically light Ba (−0.17 ± 0.05 ) to the deep Atlantic Ocean. We estimate that global hydrothermal inputs of Ba are 4.6 ± 2.2 Gmol/yr. These observations highlight the potential of hydrothermal Ba to be an isotopically light source component of the marine Ba isotope budget.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-03-01
    Description: Highlights: • Transcriptomic immune response assessments in seahorse (Hippocampus erectus). • Seahorses exposed in two phases to heat-killed Vibrio and Tenacibaculum strains. • Adaptive immune memory evidence (double-exposed) and increased naivety to Tenacibaculum. • Upregulated gene expression pertaining to potential innate ‘trained immunity’. • Trained immunity potential compensator for deduced MHC II loss of function. Evolutionary adaptations in the Syngnathidae teleost family (seahorses, pipefish and seadragons) culminated in an array of spectacular morphologies, key immune gene losses, and the enigmatic male pregnancy. In seahorses, genome modifications associated with immunoglobulins, complement, and major histocompatibility complex (MHC II) pathway components raise questions concerning their immunological efficiency and the evolution of compensatory measures that may act in their place. In this investigation heat-killed bacteria (Vibrio aestuarianus and Tenacibaculum maritimum) were used in a two-phased experiment to assess the immune response dynamics of Hippocampus erectus. Gill transcriptomes from double and single-exposed individuals were analysed in order to determine the differentially expressed genes contributing to immune system responses towards immune priming. Double-exposed individuals exhibited a greater adaptive immune response when compared with single-exposed individuals, while single-exposed individuals, particularly with V. aestuarianus replicates, associated more with the innate branch of the immune system. T. maritimum double-exposed replicates exhibited the strongest immune reaction, likely due to their immunological naivety towards the bacterium, while there are also potential signs of innate trained immunity. MHC II upregulated expression was identified in selected V. aestuarianus-exposed seahorses, in the absence of other pathway constituents suggesting a possible alternative or non-classical MHC II immune function in seahorses. Gene Ontology (GO) enrichment analysis highlighted prominent angiogenesis activity following secondary exposure, which could be linked to an adaptive immune process in seahorses. This investigation highlights the prominent role of T-cell mediated adaptive immune responses in seahorses when exposed to sequential foreign bacteria exposures. If classical MHC II pathway function has been lost, innate trained immunity in syngnathids could be a potential compensatory mechanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-03-05
    Description: In the past three decades, altimeter-based remote sensing has been a widely used system to estimate ocean surface currents. However, it remains a great challenge to effectively resolve scales below ∼100 km at high latitudes and ∼ 300 km at mid-latitudes. In this study, we propose a scheme that utilizes geostrophic equilibrium and surface quasigeostrophy theory (SQG) to improve surface current resolution by incorporating remote sensing sea surface temperature (SST), sea surface height (SSH), and sea surface salinity (SSS) observations. The scheme separately characterizes the larger-scale flows and smaller-scale motions of surface currents. A case study encompassing the Agulhas surface current demonstrates that the smaller-scale motions associated with temperature fronts are well captured by introducing high spatial-temporal resolution SST data. Furthermore, the reconstructed surface current is systemically evaluated by using surface drogued drifters and a Lagrangian synthetic particle tracking tool throughout the South Indian Ocean (SIO) for 2011–2015. Notably, the reconstructed zonal velocity component is closer to the drifter observations than the meridional counterpart and corresponding velocity phase. Regionally, the Antarctic Circumpolar Current (ACC) showcases superior reconstruction performance, with higher skill scores and lower Lagrangian separation distances. However, a relatively large uncertainty is observed around the Agulhas Retroflection (AR) and Greater Agulhas System (GAS), which are linked to complicated regional dynamic regimes. We finally conduct four simulation experiments to explore the effect of different SST products on surface current reconstruction within the subdomain AR. The results indicate the varying potentials of the four evaluated SST products for informing surface current applications. Specifically, the MWIRSST enhances the likelihood of particles reaching the target field, while DMI OI shortens the average deviation distance of the arrived particles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-03-05
    Description: Highlights • Mercury methylation in sediment rapidly transported into water and diatoms. • CH3Hg flux was highest for sediments with higher sulfide and organic content. • Mineral and compressed sediment released minor Hg and CH3Hg. • Higher sediment Hg species flux does not correlate with high sediment content. • Stable isotope incubations provide substantial insight to environmental Hg cycling. Abstract Mercury (Hg) is a conspicuous and persistent global pollutant. Ionic Hg can be methylated into noxious methylmercury (CH3Hg), which biomagnifies in marine tropic webs and poses a health risk to humans and organisms. Sediment Hg methylation rates are variable, and the output flux of created CH3Hg are dependent on sediment characteristics and environmental factors. Thus, uncertainties remain about the formation and flux of CH3Hg from sediment, and how this could contribute to the bioaccumulative burden for coastal organisms in shallow ecosystems. Cores were collected from 3 estuarine locations along the Eastern USA to examine how sediments characteristics influence the introduction of Hg and CH3Hg into the base of the food chain. Stable isotopes of inorganic 200Hg and CH3199Hg were injected into sediments of individual cores, with cultured diatoms constrained to overlying waters. Five different treatments were done on duplicate cores, spiked with: (1) no Hg isotopes (control); (2) inorganic 200Hg; (3) CH3199Hg; (4) both 200Hg and CH3199Hg isotopes, (5) both 200Hg and CH3199Hg into overlying waters (not sediment). Experimental cores were incubated for 3 days under temperature and light controlled conditions. These results demonstrate that upper sediments characteristics lead to high variability in Hg cycling. Notably, sediments which contained abundant and peaty organic material (∼28 %LOI), had the highest pore water DOC (3206 μM) and displayed bands of sulfur reducing bacteria yielded the greatest methylation rate (1.97 % day−1) and subsequent diatom uptake of CH3200Hg (cell quota 0.18 amol/cell) in the overlying water.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-03-05
    Description: Highlights • Solutions to the climate crisis are not ahistorical. • Both social and technical processes explain their rise (or fall) on the agenda. • Thinking about ocean CDR closely co-evolved with scientific understandings of global climate change. • Ocean CDR methods have followed cycles of hype, controversy and disappointment. • Key sociotechnical configurations and narrative changes explain the new hype around ocean CDR. Abstract While the ocean has long been portrayed as a victim of climate change, threatened by ocean warming and acidification, it is now increasingly framed as a key solution to the climate crisis. In particular, the promising carbon sequestration potential of the ocean is being emphasised. In this paper, we seek to historicise the practices, discourses and actors that have constructed the ocean as a climate change solution space. We conceptualise the debate about the mitigation potential of the ocean as a contested site of governance, where varying actors form alliances and different sociotechnical narratives about climate action play out. Using an innovative quali-quantitative methodology which combines scientometrics with document analysis, observational fieldwork, and interviews, we outline three historical phases in the history of ocean carbon sequestration that follow recurring cycles of hype, controversy and disappointment. We argue that the most recent hype around ocean carbon sequestration was not triggered by a technological breakthrough or a reduction in scientific uncertainty, but by new socio-technical configurations and coalitions. We conclude by showing that how climate change solutions are put on the agenda and become legitimised is both a scientific and political process, linked to how science frames the climate crisis, and ultimately, its governance.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-03-04
    Description: Climate change is driving compositional shifts in ecological communities directly by affecting species and indirectly through changes in species interactions. For example, competitive hierarchies can be inversed when competitive dominants are more susceptible to climate change. The brown seaweed Fucus vesiculosus is a foundation species in the Baltic Sea, experiencing novel interactions with the invasive red seaweed Gracilaria vermiculophylla, which is known for its high tolerance to environmental stress. We investigated the direct and interactive effects of warming and co-occurrence of the two algal species on their performance, by applying four climate change-relevant temperature scenarios: 1) cooling ) 2 °C below ambient – representing past conditions), 2) ambient summer temperature (18 °C), 3) IPCC RCP2.6 warming scenario (1 °C above ambient), and 4) RCP8.5 warming (3 °C above ambient) for 30 days and two compositional levels (mono and co-cultured algae) in a fully-crossed design. The RCP8.5 warming scenario increased photosynthesis, respiration, and nutrients' uptake rates of mono- and co-cultured G. vermiculophylla while growth was reduced. An increase in photosynthesis and essential nutrients' uptake and, at the same time, a growth reduction might result from increasing stress and energy demand of G. vermiculophylla under warming. In contrast, the growth of mono-cultured F. vesiculosus significantly increased in the highest warming treatment (+3 °C). The cooling treatment (−2 °C) exerted a slight negative effect only on co-cultured F. vesiculosus photosynthesis, compared to the ambient treatment. Interestingly, at ambient and warming (RCP2.6 and RCP8.5 scenarios) treatments, both F. vesiculosus and G. vermiculophylla appear to benefit from the presence of each other. Our results suggest that short exposure of F. vesiculosus to moderate or severe global warming scenarios may not directly affect or even slightly enhance its performance, while G. vermiculophylla net performance (growth) could be directly hampered by warming.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-03-08
    Description: Marine heatwaves (MHWs) are widely recognized as prolonged periods of significantly elevated sea surface temperatures, leading to substantial adverse impacts on marine ecosystems. However, a comprehensive understanding of their characteristics and potential changes under climate change in the South China Sea (SCS, 0 ∼ 25°N, 105 ∼ 125°E) remains insufficient. Here, utilizing the OISST V2.0 reanalysis dataset, our study first examines MHW characteristics and their trends in the SCS during the historical period (1982 ∼ 2014). Then, in accordance with the criteria established in this study, GFDL-ESM4, EC-Earth3-Veg, NESM3, EC-Earth3, and GFDL-CM4 are identified from the CMIP6 ensemble of 19 models for their enhanced simulations of historical MHW characteristics. Moreover, considering that the fixed and sliding threshold methods offer distinct perspectives on the future evolution of MHWs, we employ both approaches to evaluate MHW characteristics under projected scenarios for the future period (2015 ∼ 2100) and subsequently compare the disparities between the two methodologies. The outcomes obtained using these methods consistently indicate that MHWs in the SCS are anticipated to intensify and persist for longer durations in the future. Besides, addressing seasonal variability, the peak intensity of MHWs falls in May during both the historical period and the four projected future scenarios. This study provides valuable insights into the behavior of MHWs in the SCS within the context of climate change, underscoring the urgency of adopting effective mitigation strategies. Especially, the use of two definition methods provides a more comprehensive set of information for understanding the future changes of MHWs in the SCS.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-03-18
    Description: Highlights: • Huidobria chilensis is an endemic shrub distributed in the south of the Atacama Desert with a disjunct population at the northern coast. • Population and genetic structure correlate with geographic distance and geological factors. • Rain fall and fog, as well as ground water, must be regarded as important factors for populations at the coast and the Andean valleys, respectively. • A combination of different software tool to analyze GBS data allowed a good understanding of the population structure and genetic diversity. Abstract: Survival in hyperarid deserts is a major challenge for life in general and for plants in particular. The Atacama Desert presents harsh conditions such as limited rainfall, crusted soils, high soil salinity, high altitude, and intense solar radiation. These conditions, together with paleoclimatic variations over the last 10 million years, have influenced the genetic structure and connectivity of plant populations, resulting in a diverse flora with high endemism. However, the diversification of most lineages appears to be relatively recent, in contrast to the reported age of the Atacama Desert and the onset and expansion of hyperarid conditions since the late Oligocene and early Miocene. A prominent exception is Huidobria chilensis (Loasaceae), which is thought to be endemic to the Atacama since the Eocene. However, it is still not understood why this plant has been successful in adapting to the harshening environmental conditions. To investigate its genetic structure in relation to the history of the Atacama Desert, we studied 186 individuals from 11 populations using genotyping-by-sequencing (GBS). A total of nearly 56 k genome-wide single nucleotide polymorphisms (SNPs) were analyzed for population structure and genetic diversity. We identified four genetic clusters corresponding to geographic regions: the coastal region south of Tocopilla, the Cordillera de la Costa around Chañaral, and the Copiapó catchment 1 and 2. Genetic diversity within and between these clusters was analyzed along with rainfall, altitude, and landscape data. Although the genetic data support `isolation by distance’ as a major factor for genetic divergence between populations, the study also reveals the influence of topography on the distribution of H. chilensis and highlights the role of hydrologically connected watersheds and rivers in plant migration and colonization. This shapes the species' evolutionary trajectory and genetic diversity. Understanding these patterns in H chilensis lets one draw general conclusions about adaptation and survival strategies of plants in extreme desert environments such as the Atacama.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-03-15
    Description: Highlights: • Microphytobenthos contributed to the particulate organic matter in both beaches. • Allochthonous materials provide relevant contributions to the POM in surf zones. • Estuarine subsidies' availability determines changes in consumers' isotopic niches. • Higher estuarine trophic subsidies resulted in narrower niches of dominant species. Abstract: Benthic invertebrates in the surf zone of exposed sandy beaches represent important links for energy circulation between benthic and pelagic food webs. This work assesses the trophic ecology of co-occurring epi- and hyper-benthic invertebrates inhabiting the surf zone of sandy beaches located close to an estuarine mouth. It illustrates that different sources of organic matter induce changes in resource utilization. The trophic positions, and the niche width and overlap of species were described using δ13C and δ15N stable isotope analysis. The contribution of different sources to the particulate organic matter was quantified through stable isotopes analysis and fatty acids profiles. Shifts in the trophic niches of dominant species reflected a decrease in the contribution of estuarine carbon to the diets along the coast. This change in contribution of estuarine carbon also influenced trophic niche properties: more diverse resources availability resulted in narrower niches without overlap while less diverse resources resulted in broad isotopic niches and a highest overlap. Results show that spatial variations in the availability of resources can modify carbon pathways and trophic interactions in coastal food webs. Whenever resources are abundant, species display a more specialized diet while food scarcity leads to broader diets, a pattern consistent with the optimal foraging theory. This resource maximization behavior commonly observed in nature is also occurring in surf zone ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-03-22
    Description: High dissolved iron (dFe) concentrations of the order of 10-100 nmol L-1 are a feature of waters influenced by sedimentary inputs in oxygen minimum zones (OMZ). However, the temporal development of dFe concentrations is poorly defined due to a general reliance on snapshot cross-shelf sections to study marine trace metal dynamics. Multiple cruise campaigns since the 1980s have investigated Fe dynamics over the Peruvian shelf, particularly between 9-17°S where the shelf is broad, extremely productive and known to feature benthic dFe effluxes which are amongst the highest measured globally. This extensive long-term dataset uniquely allows us to study the interannual variability in dFe concentrations and their response to El Niño–Southern Oscillation (ENSO) events. By combining data from 11 cruises during the period 1984-2017 we are able to evaluate dFe dynamics on interannual timescales in a major OMZ. The region where average dFe concentrations are sensitive to variations in ENSO is confined to a subsurface layer at depths between 50-150 m, particularly in the narrow coastal region within 50 km of the coastline. Subsurface dFe concentrations were generally low during El Niño events (0.7-15.4 nmol L-1) and relatively high with a wider range of variability during the cold ENSO phase (1.1-52.1 nmol L-1). Inverse relationships between wind speed and surface/subsurface dFe were evident. In the subsurface layer, this may be attributable to enhanced dFe offshore transport along isopycnals when upwelling-favorable winds relax in accordance with previously outlined theories. Surface layer (〈40 m) dFe variability was likely associated with a dilution and/or oxidation effect depending on the strength of wind driven water column mixing. Upwelling brings macronutrient-rich water into the euphotic zone, but its intensity had a limited impact on upper layer dFe concentrations possibly due to the influence of an onshore geostrophic flow. Interannual variability in surface chlorophyll-a (Chl-a) was found to correlate with dFe concentration in the offshore zone of northern Peru. This is consistent with bioassay experiments and climatological residual nitrate concentrations which both indicate proximal Fe limitation of phytoplankton growth over and beyond the northern Peruvian shelf. Overall, our work highlights the importance of physical factors driving short-term variations in Fe availability in one of the world’s most economically important fishery regions and suggests that, despite pronounced spatial and temporal variability in dFe concentrations, the ENSO phase has an impact on dFe availability.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-03-22
    Description: Underwater image restoration has been a challenging problem for decades since the advent of underwater photography. Most solutions focus on shallow water scenarios, where the scene is uniformly illuminated by the sunlight. However, the vast majority of uncharted underwater terrain is located beyond 200 meters depth where natural light is scarce and artificial illumination is needed. In such cases, light sources co-moving with the camera, dynamically change the scene appearance, which make shallow water restoration methods inadequate. In particular for multi-light source systems (composed of dozens of LEDs nowadays), calibrating each light is time-consuming, error-prone and tedious, and we observe that only the integrated illumination within the viewing volume of the camera is critical, rather than the individual light sources. The key idea of this paper is therefore to exploit the appearance changes of objects or the seafloor, when traversing the viewing frustum of the camera. Through new constraints assuming Lambertian surfaces, corresponding image pixels constrain the light field in front of the camera, and for each voxel a signal factor and a backscatter value are stored in a volumetric grid that can be used for very efficient image restoration of camera-light platforms, which facilitates consistently texturing large 3D models and maps that would otherwise be dominated by lighting and medium artifacts. To validate the effectiveness of our approach, we conducted extensive experiments on simulated and real-world datasets. The results of these experiments demonstrate the robustness of our approach in restoring the true albedo of objects, while mitigating the influence of lighting and medium effects. Furthermore, we demonstrate our approach can be readily extended to other scenarios, including in-air imaging with artificial illumination or other similar cases.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-03-25
    Description: The impact of oxygen on the preservation of organic matter in marine surface sediments is still controversial. We revisited this long-standing debate by determining the burial efficiency of sedimentary organic matter in the Black Sea, the largest anoxic and euxinic basin in the modern ocean. Surface sediments were sampled in the Danube paleodelta on the northwestern margin of the Black Sea at 420–1550 m water depth. Steady-state modeling of solid species (particulate organic carbon and nitrogen) and solutes (ammonium, sulfate, and total alkalinity) in sediments was performed to quantify rates of mass accumulation, particulate organic matter (POM) degradation, and POM burial. We develop a novel analytical model to quantify these rates applying an inverse modelling approach to down core data accounting for molecular diffusion, sediment burial and compaction. Our model results indicate that 56.7 ± 6.6 % of the particulate organic matter deposited in the study area is not degraded in surface sediments but accumulates below 10 cm sediment depth. This burial efficiency is substantially higher than those previously derived for seafloor areas underlying oxygenated bottom waters. Hence, our study confirms previous studies showing that euxinic bottom water conditions promote the preservation of particulate organic matter in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-03-25
    Description: The TetraEther indeX of 86 carbon atoms (TEX86) is widely used as a proxy to reconstruct past sea surface temperatures. Most current applications of TEX86 are primarily based on analyzing the composition of isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) that comprise TEX86 in sediments, with the assumption that the sedimentary isoGDGTs are mainly derived from the surface mixed layer. Here we report on the variations in the isoGDGT distribution, archaeal abundance and community through the water column of the Western Pacific Ocean, directly testing the export depth of isoGDGTs and constraining the temperature records of TEX86. Our data show that maximum isoGDGT concentrations occurred in subsurface waters (150–200 m) with maximum archaeal abundances. The ratio between isoGDGTs bearing 2 vs. 3 cyclopentane moieties, i.e. [2/3] ratio, increased with depth, which is likely related to the shift of the archaeal community from Ca. Nitrosopelagicus-dominance to norank_f__Nitrosopumilaceae-dominance. Models based on the [2/3] ratios in the water column predicted an average export depth of isoGDGTs to sediments of around 150–200 m, consistent with the robust relationship between the compiled sedimentary TEX86 and the annual mean subsurface temperature. Taken together, our findings support that TEX86 records subsurface rather than surface temperatures in the open ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
  • 36
    Publication Date: 2024-03-25
    Description: The ocean region along the latitude of 40oS in the South Atlantic, characterized by enhanced primary productivity, forms a transition zone between the nutrient replete but iron depleted Southern Ocean, and the nitrate and iron depleted Subtropical Gyre. Here, we present distributions of nutrient-type dissolved and particulate trace metals (dTMs and pTMs) including cadmium (Cd), nickel (Ni), copper (Cu), and zinc (Zn) in the South Atlantic from the GEOTRACES GA10 cruises. Phytoplankton uptake, riverine and atmospheric inputs shaped dTM and pTM concentrations in surface waters (dCd 27.8±36.0 pmol kg-1, n=222; dCu 0.732±0.429 nmol kg-1, n=222; dNi 3.38±0.52 nmol kg-1, n=219; dZn 0.332±0.398 nmol kg-1, n=214). Subsurface nutrients and dTMs (dCd 563±184 pmol kg-1, n=335; dCu 1.819±0.773 nmol kg-1, n=334; dNi 6.19±1.06 nmol kg-1, n=330; dZn 3.71±2.10 nmol kg-1, n=333) were controlled by the mixing of Antarctic origin waters and North Atlantic Deep Waters (NADW) with negligible contributions from local remineralization. Dissolved and particulate TMs in the Argentine Basin showed elevated concentrations towards the seafloor because of benthic inputs. Direct hydrothermal inputs of dTMs and pTMs to deep waters were not observed along the transect. The Cd-Cu-Zn-phosphate stoichiometries of Antarctic origin waters were set by a combination of dynamic physical circulation and preferential uptake of Cd, Cu, and Zn relative to phosphate in surface waters because of a dominance by diatoms in the Southern Ocean. Water mass mixing subsequently produced convoluted dCu-P and dZn-P relationships and apparent linear dCd-P and dNi-P relationships in the South Atlantic. More importantly, endmember characteristics of Antarctic waters and NADW are largely fixed in their formation regions in high latitude oceans. Therefore, the highly dynamic high latitude oceans are key regions that supply nutrients and TMs at specific ratios to low latitude oceans via the thermohaline circulation. Changes to processes in the high latitude oceans may have consequences for marine primary productivity downstream, and hence the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-03-25
    Description: Highlights • Investigation into the potential of Porites microatolls for SST reconstruction. • Comparison between recent and more conventional coral paleoclimatology methods. • Application of Srsingle bondU and Li/Mg paleothermometer. • Accuracy and reproducibility of Sr/Ca proved to be the most suitable proxy for SST reconstruction. Abstract Massive dome-shaped coral Porites are the predominant choice for paleoclimate studies due to their consistent and reliable growth. When growing close to sea level, they become limited in their vertical growth and form so-called ‘microatolls’. Microatolls have not yet been extensively explored for paleoclimate reconstruction. Here, we investigate how reliable modern Porites microatolls are against empirical sea-surface temperature using Sr/Ca, δ18O, Li/Mg and Srsingle bondU paleothermometry methods on samples from the Society Islands, French Polynesia. Our results show Sr/Ca ratios have the lowest Standard Error of the Inverse Prediction (SEIP) at 0.415 °C (N = 41) with a calibration of Sr/Ca (mmol mol−1) = −0.082 ± 0.006 SST (°C) + 11.256 ± 0.170 and with high reproducibility across multiple corals. The reproducibility of δ18O was less good, with SEIP increasing to 0.829 °C (N = 41). Considering methods directly from the literature, Li/Mg ratio empirically corrected for Sr/Ca had the best balance between bias and precision where no local calibration could be available. This study independently evaluates and confirms the suitability of Porites microatolls from well-flushed environments for paleoclimate studies. Fossil dome-shaped Porites grow anywhere between near-surface and roughly 20 m depths which inherently incorporates uncertainty into any sea surface temperature reconstruction. This uncertainty is significantly reduced for microatolls due to their well-constrained bathymetry. The study represents a fundamental step in paleoclimate research targeting consistently near the water-air interface bringing reliability and, especially when combined with their ability to reconstruct past sea-level changes, microatolls have the potential to be central for future paleoenvironmental studies.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-03-26
    Description: This review has been undertaken to understand the effectiveness of ocean acidification on oceanic micronutrient metal cycles (iron, copper and zinc) and its potential impacts on marine biota. Ocean acidification will slow down the oxidation of Fe(II) thereby retarding Fe(III) formation and subsequent hydrolysis/precipitation leading to an increase in iron bioavailability. Further, the increased primary production sustains enzymatic bacteria assisted Fe(III) reduction and subsequently the binding of weaker ligands favours the dissociation of free Fe(II) ions, thus increasing the bioavailability. The increasing pCO2 condition increases the bioavailability of copper ions by decreasing the availability of free CO32− ligand concentration. The strong complexation by dissolved organic matter may decrease the bioavailable iron and zinc ion concentration. Since ocean acidification affects the bioavailability of essential metals, studies on the uptake rates of these elements by phytoplankton should be carried out to reveal the future scenario and its effect on natural environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-04-03
    Description: Highlights • Present day infiltration conditions in an monsoonal environment are studied. • Noble gas concentrations in groundwater are fixed near the soil surface. • Noble gas temperatures represent seasonal infiltration conditions in the monsoon. • Holocene and modern infiltration conditions are quite similar in southern Oman. Abstract Comparing directly measured soil temperatures with noble gas recharge temperatures (NGTs) inferred from noble gas concentrations indicates that the infiltrating soil water equilibrates with soil air near the soil surface during the rainy season. Therefore, NGTs of groundwater recently recharged by the Indian Summer Monsoon (ISM) in the Dhofar Mountains in southern Oman reflect the soil temperatures of the 3-month period and do not represent an annual mean. This finding highlights the need to account for seasonality when interpreting NGT data in regions with pronounced dry and wet seasons. We extend the observations from the southern flank of the Dhofar Mountains to three wells situated on the northern flank of the Dhofar Mountains. Two of these wells yield water of Holocene age that was recharged by the monsoon, their NGT signals are therefore classified as seasonal. The NGT calculated from a third well for recharge conditions during the Last Glacial Maximum (LGM), when the ISM was absent, is approximately 3 °C lower than that of the two Holocene wells. The lower LGM noble gas temperature corresponds well with the lower annual Sea Surface Temperature (SST) in the nearby Arabian Sea. NGTs from published studies from northern Oman are 1–3 °C higher when compared with our data of the same period in the southern Oman. We explain this regional difference of reconstructed temperatures for the LGM and Holocene groundwater with a more continental climatic influence on the infiltration conditions further to the north. The published NGTs from northern Oman show a large temperature difference between the late Holocene and the LGM. In view of our finding of seasonal NGT signals under monsoonal climate, part of this difference may reflect a change in the precipitation regime rather than in air temperature.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-04-03
    Description: Highlights • This study simulates the sedimentation-driven development of multiple stacked BSRs in the Danube paleo-delta, Black Sea. • Formation of multiple BSRs in the Black Sea is controlled by the sequence of sedimentation events of the levees induced by sea-level changes. • Kinetics of phase transitions plays a key role in the coexistence, location, and timing of the multiple BSRs. • Development of multiple stacked BSRs is possible only under a narrow range of parameters, unique for the Danube delta setting. Abstract The gas hydrate stability zone (GHSZ) is defined by pressure-temperature-salinity (pTS) constraints of natural gas hydrate (GH) system. It refers to a depth interval which usually extends several hundred meters into the sediment column at sufficient water depths. The lower boundary of the GHSZ often coincides in seismic reflection data with a bottom simulating reflector (BSR), which indicates the transition between the underlying free gas and the overlying no-free gas zone at the thermodynamic stability boundary. The GHSZ in geological systems is dynamic and can shift in response to sedimentation processes and/or changes in environmental conditions such as bottom water temperatures, hydrostatic pressure, and water salinity. The appearance of multiple BSRs has been interpreted as remnants of former GHSZ shifts which have persisted over geological timescales. In this study, we numerically simulate the sedimentation-driven development of multiple stacked BSRs in the Danube deep-sea fan in the Black Sea. We show that in this dynamic sediment depositional regime sufficient amounts of residual gas remain trapped in the former GHSZ, given sufficiently high initial gas hydrate saturations, so that paleo-BSRs could persist over long time scales (similar to 300 kyr). In particular, the formation and persistence of multiple BSRs in the Danube Delta is controlled by the sequence of sedimentation events of the levees induced by sea-level change. The kinetics of methane phase transitions between gas hydrate, dissolved methane, and free gas plays a key role in the coexistence, location and timing of the multiple BSRs. Thus, For a given permeability, distinct multiple BSRs appear only for a narrow range of GH formation (10(-14) 〈 k(f) [mol/m(2) Pa s] 〈= 10(-12)) and dissociation rates (10(-16) 〈 k(d) [mol/m(2) Pa s] 〈 10(-14)).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-04-03
    Description: Multiple stressors often act concomitantly on ecosystems but detection of species responses follows the “single species-single driver” strategy, and cumulative impacts are seldom considered. During 1990–2010, multiple perturbations in the Caspian Sea, led to the decline of kilka, sturgeon and Caspian seal populations. Specific causes for their collapse were identified but a cumulative assessment has never been carried out. Using loop analysis, a qualitative modelling technique suitable in poor-data contexts, we show how multiple drivers can be combined to assess their cumulative impact. We confirm that the decline of kilka, sturgeon and Caspian seal populations is compatible with a net effect of the concomitant perturbations. Kilkas collapse was certainly due to the outburst of M. leidyi and overfishing. In addition, the excess nutrient might have conspired to reduce these populations. The interplay between concurrent drivers produces trade-offs between opposite effects and ecosystem management must face this challenge
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-04-03
    Description: Highlights • Four rhyolitic explosive eruption events were distinguished from 13.1 Ma to 11.6 Ma. • Silicic volcanism occurred at termination of subduction in a thinning lithosphere. • Rhyolites show extreme magma differentiation and reduced-dry character. • Zircon trace element and Hf isotope fingerprint is an effective correlation tool. Abstract The Tokaj Mts. volcanism occurred in a thinning continental lithosphere regime at the final stage of the subduction process. Using high-precision zircon U-Pb dating, four major explosive eruption events were distinguished. Among them the 13.1 Ma Sátoraljaújhely and the 12.0 Ma Szerencs eruptions could have yielded large amount of volcanic material (possibly 〉 100 km3) and they were associated with caldera collapse as shown by the several hundred-metre-thick pyroclastic deposits and the long (〉100 km) runout pyroclastic flow in case of the 13.1 Ma eruption. The 12.3 Ma Hegyköz and the 11.6 Ma Vizsoly eruptions were relatively smaller. The volcanic products can be readily distinguished by zircon and glass trace elements and trace element ratios, which can be used for fingerprinting and to correlate with distal deposits. The Rb, Ba, Sr content and strong negative Eu-anomaly of the glasses reflect extreme crystal fractionation, particularly for the Szerencs rhyolitic magma. The silicic volcanic products of the Tokaj Mts. show compositional similarities with the so-called ‘dry–reduced–hot’ rhyolite type consistent with an origin in an extensional environment, where the primary magmas were formed by near-adiabatic decompression melting in the mantle with subordinate fluid flux. In contrast, some of the older Bükkalja rhyolitic magmas evolved via more hydrous evolutionary paths, where amphibole played a role in the control of the trace element budget. The significant increase of zircon ε Hf values from −8.8 to + 0.2 in the rhyolitic pyroclastic rocks of Tokaj Mts. with time implies that mantle-derived magmas became more dominant. This can be explained by the specific tectonic setting, i.e. the final stage of subduction when the descending subducted slab became almost vertical, which exerted a pull in the upper lithosphere leading to thinning and accelerated subsidence as well as asthenospheric mantle flow just before the slab detachment.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-04-10
    Description: Trace metals (TMs) manganese (Mn), cobalt (Co), and aluminium (Al) have important geochemical and biological roles in the ocean. Here, we present full depth profiles of dissolved (d) and particulate Al, Mn, and Co along the latitude of 40 °S in the South Atlantic Ocean from the GEOTRACES GA10 cruises that operated in austral spring 2010 and summer 2011. The region is characterized by enhanced primary productivity and forms a key transition zone between the Southern Ocean and South Atlantic Subtropical Gyre. The mean concentrations of dAl, dCo, and dMn (±standard deviation) were 3.36 ± 2.65 nmol kg−1, 35.3 ± 17.6 pmol kg−1, and 0.624 ± 1.08 nmol kg−1, respectively. Their distributions in surface waters were determined by external sources and complex internal biogeochemical processes. Specifically, surface ocean dCo was controlled by the interplay between phytoplankton uptake, remineralization and external inputs; dMn was likely determined by the formation and photoreduction of Mn-oxides; and dAl was supplied by atmospheric deposition and removed by scavenging onto particles. Fluvial and sedimentary inputs near the Rio de La Plata estuary and benthic sources from the Agulhas Bank resulted in elevated dTM concentrations in near-shore surface waters. These externally sourced dTMs were effectively delivered to the open ocean by offshore diffusion and/or advection, and potentially facilitated enhanced primary productivity along the transect. The distributions of dTMs at depth were predominantly controlled by the mixing of North Atlantic Deep Water (NADW) and waters of Antarctic origin (e.g., Upper Circumpolar Water (UCDW) and Antarctic Bottom Water (AABW)). The calculated endmember concentrations of dAl and dCo in NADW showed minor decreases in the SASTG following north–south transport, suggesting removal rates of 0.064 nM/year and 0.035–0.075 pM/year, respectively. The endmember concentration of dCo in AABW was maintained at ∼30 pmol kg−1 without evidence for scavenging removal in the Southern Ocean and SASTG (time frame 〉400 years). The concentrations of dMn in NADW and AABW were between 0.1 and 0.16 nmol kg−1, and any elevated dMn concentrations were ascribed to local external inputs (e.g., from sediments in the Argentine Basin and hydrothermal activity near the Mid-Atlantic Ridge). Hence, four controlling factors (sources, internal cycling, water mass mixing and time) need to be considered when assessing TM distributions in the global ocean, even for TMs that are vulnerable to scavenging removal processes. Because the deep waters formed in high latitude oceans are crucial components of the global thermohaline overturning system, any processes (e.g., glacier melting, upwelling and sinking, and biological activity) that impact the preformed dTM concentrations in high latitude oceans will determine the downstream dTM distributions. Therefore, the sources and sinks of TMs and associated biological activity in high latitude oceans could engender basin to global scale impacts on seawater distributions of Al, Co, and Mn and their stoichiometric relationships with macronutrients, and the global biogeochemical cycles of these scavenged-type TMs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-04-09
    Description: The overriding physicochemical controls in seawater discussed here are the chemical composition and the state of master variables including temperature, pressure, salinity, pH and redox status. Dissolved Organic Matter also plays a major role, but since its properties are not sufficiently well quantified it is described as an emergent master variable at this stage. The theoretical basis for the treatment of equilibrium chemistry and kinetics is presented, together with projections of the future development of seawater chemistry resulting from climate change. Key points • Composition of seawater • Master variables (temperature, pressure, pH, oxygen/redox state) • The role of Dissolved Organic Matter • Equilibrium chemistry • Kinetics • The consequences of ongoing global changes
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
  • 46
    Publication Date: 2024-04-09
    Description: Highlights • Developed an innovative weighted outlier detection function that adaptively selects the best outlier detection technique, markedly improving precision and robustness in multibeam echosounder data analysis. • Demonstrated superior performance of the weighted function over traditional methods, achieving higher precision, recall, and F1 scores, pivotal for accurate seafloor mapping. • Enhanced data quality for geoscientific applications by effectively identifying and removing outliers without introducing data voids, preserving the integrity of multibeam sonar data. • The function’s significance extends to supporting sustainable environmental and resource management practices through improved accuracy in seabed mapping. • Discussed the adaptability of the method to various outlier patterns and its limitations, highlighting the need for further research and validation across different marine environments and data types. Abstract Multibeam sonar data are a valuable tool for seafloor mapping and geological studies. However, the presence of outliers in multibeam data can distort the results of analyses and reduce the accuracy of seafloor maps. In this paper, we define a weighting function based on the performance of various outlier detection techniques (OTDs) for detecting outliers in multibeam data, which calculates an outlier probability score for each sounding. Our results show that each OTD has its own strengths and weaknesses, and that a combination of outlier detection techniques is promising to improve reproducibility, explainability and the accuracy of the detection process. To address the challenge of detecting outliers in multibeam data, we propose a weighted outlier detection function that outperforms individual outlier detection techniques in terms of precision, recall and F1 scores by considering their strengths and combining them in a way that accounts for variations in the data. The function detects various types of outliers with high precision and recall values, resulting in valuable improvements in outlier detection performance for multibeam data. Overall, our proposed workflow has the potential to significantly improve the way multibeam data cleaning is performed, with the weighted outlier detection function being applied first, detecting most of the outlier automatically, followed by a domain-expert review of a small group of soundings whose automatic outlier labelling is not unequivocal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-04-15
    Description: Fishes occur in a wider range of habitats than any other vertebrate or invertebrate group, from the upper reaches of streams in high mountain ranges to the mouths of temperate and tropical rivers, and from the intertidal zone to the ocean's abyss. Fish grow in size, spawn and die, either from natural causes (predation, diseases, ageing) or from being caught in fishing nets if the population is exploited. These dynamical processes are expressed with mathematical equations and are used in population models to estimate fisheries reference points (stock assessment), which in turn provide the basis for fisheries management. Fish populations subjected to fisheries exploitation are called fish “stocks”. Fishing has been increasingly affecting fish stocks and ecosystems both directly and indirectly, and along with the human-induced climate change they pose major threats to fish biodiversity worldwide. Using the available data stored in local or global databases to assess the status of all stocks, even the data-poor fish stocks, and following an ecosystem approach to fisheries management that incorporates effort reduction through marine protected areas, may contribute to the sustainable exploitation of fisheries resources.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-04-15
    Description: Cadmium (Cd) has a nutrient-like distribution in the ocean, similar to the macronutrient phosphate. Significant isotope fractionation induced by the biological cycling of Cd makes it a potential tracer for nutrients and productivity. However, the Cd flux and Cd isotope composition of marine sediments can also be influenced by local redox conditions and partial remineralization of organically hosted Cd. These confounding factors are under-constrained and render it challenging to use Cd as a reliable paleoproxy. To understand the relative importance of each of these processes, we examined the Cd isotope systematics of 69 modern sediments deposited across a wide range of environments. We complement these data with four profiles of particulate Cd isotope compositions from the Southern Ocean. We report three main results. First, we show that the sedimentary flux of Cd is tightly coupled to that of organic matter. Second, most Cd burial occurs in regions with some bottom-water oxygen, and the flux of CdS to anoxic regions is, globally, minor. Finally, we find that remineralization can substantially modify sedimentary Cd isotope compositions, though it is challenging to relate pelagic and sedimentary processes. For example, we find that the relationship between sedimentary Cd isotope compositions and surface seawater [Cd] is the reverse of that predicted by isotope reactor models. Likewise, sedimentary Cd isotope compositions are anti-correlated with bottom-water oxygen. While this pattern is consistent with preferential remineralization of isotopically heavy Cd, profiles of marine particulate matter reveal the reverse, whereby the Cd isotope composition of large particles, which are most likely to reach the seafloor, becomes increasingly ‘heavy’ with depth. These results highlight how productivity, redox, and remineralization all influence the flux and isotope composition of Cd to marine sediments. While our study suggests that there is no simple way to relate sedimentary Cd isotopes to surface nutrient utilization, our data point toward several potential controls that could form the basis of novel proxies for local redox conditions and remineralization.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-12-22
    Description: This chapter aims at introducing the reader to general concepts about the main forcings of the Mediterranean Sea, in terms of exchanges through the Strait of Gibraltar, and air-sea exchanges of heat, freshwater, and momentum. These forcings are also responsible for the peculiar characteristics of Mediterranean water masses. Therefore, the chapter continues with giving a general explanation on water mass analysis, and then it describes the properties and vertical and horizontal distributions of the main Mediterranean water masses. To conclude, the reader is introduced to the use of other (biogeochemical, and chemical) tracers of water masses, with a focus on the Mediterranean Sea.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-02-01
    Description: This chapter gives an overview of the general biogeochemistry in the Mediterranean Sea explaining the particularities of the main biogeochemical variables and the physical, biological, and geochemical processes driving their distribution in the main basins of this marginal sea. Each subsection focuses on one essential variable, starting from dissolved oxygen and following inorganic nutrients, dissolved organic carbon and the CO2 system. A brief overview on the utility of those biogeochemical variables to identify water masses is also given. The chapter concludes with a summary of the projections and threats on biogeochemistry in the Mediterranean Sea under different future climate change scenarios.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-01-08
    Description: In our previous study, a β-N-acetylhexosaminidase (HaHex74) from Haloferula sp. showing high human milk oligosaccharides (HMOs) synthesis ability was identified and characterized. In this study, HaHex74 was further engineered by directed evolution and site-saturation mutagenesis to improve its transglycosylation activity for HMOs synthesis. A mutant (mHaHex74) with improved transglycosylation activity (HaHex74-Asn401Ile/His394Leu) was obtained and characterized. mHaHex74 exhibited maximal activity at pH 5.5 and 35 °C, respectively, which were distinct from that of HaHex74 (pH 6.5 and 45 °C). Moreover, mHaHex74 showed the highest LNT2 conversion ratio of 28.2% from N,N’-diacetyl chitobiose (GlcNAc2), which is 2.2 folds higher than that of HaHex74. A three-enzyme cascade reaction for the synthesis of LNT2 and LNnT from chitin was performed in a 5–L reactor, and the contents of LNT2 and LNnT reached up to 15.0 g Lsingle bond1 and 4.9 g Lsingle bond1, respectively. Therefore, mHaHex74 maybe a good candidate for enzymatic synthesis of HMOs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-01-08
    Description: Harmful marine bacteria, such as Vibrio or Aeromonas species, typically exist at low abundance in ocean environments but represent a reservoir from which epidemics can arise. Particularly, Vibrio strains and their associated infections are on the rise globally due to increasing sea surface temperature representing an emergent threat for human and animal health also being responsible for large economic losses in the aquaculture industry worldwide. New technological approaches are needed to improve strategies targeting these pathogens. This review discusses new approaches based on improved sampling strategies and novel analytical methods offering increased accuracy, high throughput, and informativeness to study and detect microbial pathogens in the marine environment. Detecting and characterizing ultra-low-abundance pathogenic strains can serve as a critical tool in risk management and outbreak prevention of diseases caused by emerging marine pathogens.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-01-08
    Description: As tropical seagrass meadows decline throughout the tropics, propagule transplantation is being used as an effective restoration method. This technique promotes genetic diversity in the restored seagrass meadows. Although many environmental factors, especially temperature and burial, can influence the success of seed/seedling transplantation success, little is known about these effects on transplanted tropical seagrass propagules. To address this knowledge gap, we conducted a 92-day laboratory incubation experiment to test the effects of representive temperatures (20 °C and 30 °C) and burial status (with and without burial) on germination and seedling growth of the tropical seagrass Enhalus acoroides. Results showed that germination rate was 3-fold higher in the treatment without burial (75%) than in the treatment with burial (25%). The germination success rate in the 30 °C treatment was about two times higher than that of the 20 °C treatment. When burial and temperature were tested in combination, germination success was highest in the 30 °C without burial treatment while the lowest rates were obtained in the 20 °C and burial treatment. Further, the temperature of 30 °C benefited leaf and root growth as well. These results illustrate that burial decreased E. acoroides germination, while high temperature enhanced both germination and seedling growth. Thus, transplantation of E. acoroides propagules for tropical seagrass restoration should be conducted when seawater temperature is warm, and the seeds should be fixed on the sediment surface rather than buried.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-01-08
    Description: The Southern Ocean is a key region for analyzing environmental drivers that regulate sea-air CO2 exchanges. These CO2 fluxes are influenced by several mesoscale structures, such as meanders, eddies and other mechanisms responsible for energy dissipation. Aiming to better understand sea-air CO2 dynamics in the northern Antarctica Peninsula, we investigated an anticyclonic stationary eddy located south of Clarence Island, in the eastern basin of Bransfield Strait – named the Antarctica Slope Front bifurcation (ASFb) eddy. Physical, chemical and biological data were sampled, and remote sensing measurements taken, in the region during late summer conditions in February 2020. The eddy’s core consisted of cold (0.31 °C), salty (34.38) and carbon-rich (2247 μmol kg−1) waters with dissolved oxygen depletion (337 μmol kg−1). The core retains a mixture of local surface waters with waters derived from Circumpolar Deep Water (i.e., Warm Deep Water from the Weddell Sea and modified Circumpolar Deep Water from the Bransfield Strait) and Dense Shelf Water. The ASFb eddy acts as a CO2 outgassing structure that reaches a CO2 emission to the atmosphere of ∼1.5 mmol m−2 d–1 in the eddy’s core, mostly due to enhanced dissolved inorganic carbon (DIC). The results suggest that surface variation in DIC in the eddy’s core is modulated by (i) the entrainment of CO2-rich intermediate waters at ∼500 m, (ii) low primary productivity, associated with small phytoplankton cells such as cryptophytes and green flagellates, and (iii) respiration processes caused by heterotrophic organisms (i.e., zooplankton community). By providing a comprehensive view of these physical and biogeochemical properties of this stationary eddy, our results are key to adding new insights to a better understanding of the behavior of mesoscale features influencing sea-air CO2 exchanges in polar environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-01-08
    Description: Yak shanks and flanks are often used as food ingredients, but the lipid composition of these two parts may differ significantly. These meat parts were subjected to a lipidomics analysis using UHPLC-Q-Obitrap. Several computational tools, including feature-based molecular networks, ms-dial, and lipidone, were used to perform deep mining on the entire dataset. The analysis annotated 355 lipid species from 20 subclasses. Lipid chains have a length distribution of 16 to 20 carbons, with unsaturation ranging from 0 to 5. The results revealed that 71 lipids were significantly different in these muscles, including phosphatidylethanolamines (PEs) (16:0/20:4), PEs (18:0/19:1), PEs (18:1/22:5), sphingomyelins (SMs) (36:2; 3O), and carnitines (CARs) (22:0). Furthermore, the metabolic pathways of glycerophospholipids and sphingolipids act as important roles in the differences of these lipid components. This study obtained a comprehensive lipid profile, which is critical for understanding the precise nutritional differences in different yak meat sections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-01-08
    Description: Photosynthetic microorganisms like microalgae and cyanobacteria are quickly gaining recognition for their financial potential and have recently been subjected to research into metabolic manipulation to produce biofuels and different bio-based chemicals from CO2 and sunlight. CRISPR-Cas systems are presently the centre of attraction in synthetic biology research. Various cyanobacteria and algae species have been successfully edited using CRISPR-Cas9. However, many technical difficulties, such as chassis-organism-specific Cas9 toxicity, have delayed the progress of this tool for editing the genomes of diverse species of microalgae and cyanobacteria. CRISPR-Cas9 technology has enormous promises, and it has been employed to alter the metabolism of many algae and cyanobacteria. Advances in CRISPR-Cas9 technology and applications, as well as progress in CRISPR-based multiplex genome editing, the importance of traditional molecular tools in CRISPR biology, challenges in developing high-throughput mutant screening, and further improvements in genome-editing methods, have all been thoroughly discussed in order to make the genome engineering of algae and cyanobacteria more feasible. This review identifies important issues, suggests solutions, and highlights recent advances in genome editing in algae and cyanobacteria with the CRISPR-Cas9 system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-01-08
    Description: This study examined the phytochemical profiles (mainly phenolics, carotenoids, and organosulfur compounds) and biological effects of hydroalcoholic extracts of Allium flavum (AF), a species of the Allium genus commonly known as small yellow onion. Unsupervised and supervised statistical approaches revealed clear differences between extracts prepared with samples collected from different areas of Romania. Overall, the AFFF (AF flowers collected from Făget) extract was the best source of polyphenols, also showing the highest antioxidant capacity evaluated through both in vitro DPPH, FRAP, and TEAC anti-radical scavenging assays and cell-based OxHLIA and TBARS assays. All the tested extracts exhibited α-glucosidase inhibition potential, while only the AFFF extract exhibited anti-lipase inhibitory activity. The phenolic subclasses annotated were positively correlated with the assessed antioxidant and enzyme inhibitory activities. Our findings suggested that A. flavum has bioactive properties worth exploring further, being a potential edible flower with health-promoting implications.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-01-08
    Description: If the umbilical of Remote Operated Vehicle (ROV) allows the transmission of information in real time or the supply of energy to the robot, it also has many disadvantages such as entanglement or the difficulty of predicting its shape, which raises the question of being able to do without it. In order to turn these constraints into advantages, this paper proposes a method to estimate the position of an ROV by observing the shape of its umbilical. The umbilical is equipped with moving ballasts and buoys to give it a predictable shape with straight lines: simple mathematical models of the umbilical can thus be defined. Using these models and measuring the angles at the ends of the cable, the position of the ROV can be found. Three umbilical models with different equipment are proposed. The methods were tested in a pool and the estimated position of the ROV was compared with its actual position measured using a motion capture system.
    Type: Article , PeerReviewed
    Format: pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-01-08
    Description: Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-01-08
    Description: Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-01-08
    Description: Diatoms represent one of the most successful groups of marine phytoplankton and are major contributors to ocean biogeochemical cycling. They have colonized marine, freshwater and ice environments and inhabit all regions of the World’s oceans, from poles to tropics. Their success is underpinned by a remarkable ability to regulate their growth and metabolism during nutrient limitation and to respond rapidly when nutrients are available. This requires precise regulation of membrane transport and nutrient acquisition mechanisms, integration of nutrient sensing mechanisms and coordination of different transport pathways. This review outlines transport mechanisms involved in acquisition of key nutrients (N, C, P, Si, Fe) by marine diatoms, illustrating their complexity, sophistication and multiple levels of control.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-01-08
    Description: Since net-zero greenhouse gas emissions targets have become a keystone of European and German climate policy, a debate about the need to actively remove carbon dioxide from the atmosphere in addition to drastically reducing emissions has emerged. Although still relatively scarce, empirical studies on the emergence of carbon dioxide removal (CDR) on the political agenda have shown that variations in the constellations and positions of policy-relevant actors play a key role in shaping patterns of CDR policymaking. The German and wider European Union (EU) CDR policy space is emergent, and political actors are just beginning to position themselves. Building on our previous work which established a typology of CDR policy integration patterns and developed a discourse analytical framework for mapping CDR-policy-relevant speaker positions, we present the first fine-grained empirical reconstruction of CDR-policy-relevant actors and their positions in the German context. Our analytical approach aims to improve understanding of patterns in CDR policymaking by showing that on the EU, national, and subnational levels, a multitude of institutional actors may adopt differing positions as the CDR policy space evolves. In addition to identifying fine-grained ‘ideal types’ of positions that policy actors may adopt in the formative phase of German CDR policy, our analysis provides an empirical ‘map’ of CDR policy-relevant actors and explores hypotheses about emerging discourse coalitions and potential conflict cleavages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-01-08
    Description: “Whiting” events in the Bahama Banks, due to high concentrations of carbonate-rich particles suspended in the water, have been reported and discussed widely in the past 80 years. However, little is known about their distributions and particularly about their long-term changes. Here, using a deep learning (DL) model, we objectively delineate and quantify whiting features from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images (250-m resolution) and establish an 18-year data record (2003−2020) of whiting occurrences in the Bahama Banks. Both the Great Bahama Bank (GBB) and the Little Bahama Bank (LBB) show clear seasonality in whiting areas, where a primary peak in spring and a secondary peak in winter are found in the GBB but only one peak in winter is found in the LBB. Such a seasonality may be explained using a hydrodynamic hypothesis on calcium carbonate precipitation. The mean size of individual whiting patches in the GBB is about 2.4 ± 6.1 km2 (∼0.1 to 226 km2), while in the LBB is 1.4 ± 2.7 km2 (∼0.1 to 95 km2). The total whiting coverage in a typical cloud-free image is 87.1 km2 in the GBB and 32.0 km2 in the LBB, representing 0.14% and 0.76% of the entire GBB and LBB, respectively. Significant increases in the mean coverage have been found in the GBB since 2011, with peak coverage (∼200 km2) in 2013–2015 being at least 4 times higher than before (20–70 km2). Although the whiting area started to decrease after 2015, it did not reach the pre-2011 level until 2020. On the other hand, correlation analysis and principal component analysis of several environmental factors (pH, light, salinity, carbonate, aragonite, winds, currents) provided some hints on which factors may have contributed. From these, we infer a potential ‘Goldilocks’ scenario, whereby decreases in pH and carbonate concentration, concomitant with increases in Sea Surface Temperature (SST) and current speeds, created conditions increasingly favorable for whitings from 2011 to 2015. Continuation of these environmental trends after 2015, however, resulted in conditions increasingly unfavorable for whiting formation, yet without field-based measurements it is difficult to conclude the potential reasons for increases and decreases of whiting formation in the GBB.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-01-08
    Description: Zosteric acid (ZA) is a Zostera species-derived, sulfated phenolic acid compound with antifouling activity and has gained much attention due to its nontoxic and biodegradable characteristics. However, the yield of Zostera species available for ZA extraction is limited by natural factors, such as season, latitude, light, and temperature. Here we report the development of metabolically engineered Escherichia coli strains capable of producing ZA from glucose and glycerol. First, intracellular availability of the sulfur donor 3′-phosphoadenosine-5′-phosphosulfate (PAPS) was enhanced by knocking out the cysH gene responsible for PAPS consumption and overexpressing the genes required for PAPS biosynthesis. Co-overexpression of the genes encoding tyrosine ammonia-lyase, sulfotransferase 1A1, ATP sulfurylase, and adenosine 5′-phosphosulfate kinase constructed ZA producing strain with enhanced PAPS supply. Second, the feedback-resistant forms of aroG and tyrA genes (encoding 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase and chorismate mutase, respectively) were overexpressed to relieve the feedback regulation of L-tyrosine biosynthesis. Third, the pykA gene involved in phosphoenolpyruvate-consuming reaction, the regulator gene tyrR, the competing pathway gene pheA, and the ptsHIcrr genes essential for the PEP:carbohydrate phosphotransferase system were deleted. Moreover, all genes involved in the shikimate pathway and the talA, tktA, and tktB genes in the pentose phosphate pathway were examined for ZA production. The PTS-independent glucose uptake system, the expression vector system, and the carbon source were also optimized. As a result, the best-performing strain successfully produced 1.52 g L−1 ZA and 1.30 g L−1 p-hydroxycinnamic acid from glucose and glycerol in a 700 mL fed-batch bioreactor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-01-08
    Description: Symbiosis between prokaryotes and microbial eukaryotes (protists) has broadly impacted both evolution and ecology. Endosymbiosis led to mitochondria and plastids, the latter spreading across the tree of eukaryotes by subsequent rounds of endosymbiosis. Present-day endosymbionts in protists remain both common and diverse, although what function they serve is often unknown. Here, we describe a highly complex community of endosymbionts and a bacteriophage (phage) within a single cryptomonad cell. Cryptomonads are a model for organelle evolution because their secondary plastid retains a relict endosymbiont nucleus, but only one previously unidentified Cryptomonas strain (SAG 25.80) is known to harbor bacterial endosymbionts. We carried out electron microscopy and FISH imaging as well as genomic sequencing on Cryptomonas SAG 25.80, which revealed a stable, complex community even after over 50 years in continuous cultivation. We identified the host strain as Cryptomonas gyropyrenoidosa, and sequenced genomes from its mitochondria, plastid, and nucleomorph (and partially its nucleus), as well as two symbionts, Megaira polyxenophila and Grellia numerosa, and one phage (MAnkyphage) infecting M. polyxenophila. Comparing closely related endosymbionts from other hosts revealed similar metabolic and genomic features, with the exception of abundant transposons and genome plasticity in M. polyxenophila from Cryptomonas. We found an abundance of eukaryote-interacting genes as well as many toxin-antitoxin systems, including in the MAnkyphage genome that also encodes several eukaryotic-like proteins. Overall, the Cryptomonas cell is an endosymbiotic conglomeration with seven distinct evolving genomes that all show evidence of inter-lineage conflict but nevertheless remain stable, even after more than 4,000 generations in culture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-01-08
    Description: We analyzed biogeochemical components of brash ice, originating from sea ice and icebergs, collected in the Indian sector of the Southern Ocean during the summer and autumn of 2018–2020. Ice samples, collected from seawater by net or cage methods, were melted in the dark under cool conditions to measure physical and biogeochemical components such as salinity, stable oxygen isotopes, nutrients, and chlorophyll-a. We compared brash ice parameters with those of seawater samples from the temperature minimum layer, corresponding to the water in which the sea ice originated, to examine the effects of processes such as brine drainage, snow-ice formation, and biological activities on the biogeochemical components in sea ice. Samples from icebergs (ice formed on land) had salinity of zero and low concentrations of all other components, suggesting that the atmospheric deposition of nutrients is minimal in this clean environment. However, sea ice samples had a wide range of values for each parameter. Our results show that meteoric water makes a smaller contribution to sea ice than it typically does to multi-year landfast ice, and there is no correlation between this meteoric water contribution and nutrient concentrations, which suggests that the contribution of snow-ice formation to nutrients within sea ice is subordinate to the role of biological processes. Nutrient and chlorophyll-a concentrations in our brash ice samples are of similar magnitude to those in sea ice samples collected in the same area by coring of thick pack ice. Our data represent end-member values that may be useful to estimate the respective contributions of snow, sea ice, and seawater to surface water samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-01-08
    Description: Mathematical Oncology has emerged as a research field that applies either continuous or discrete models to mathematically describe cancer-related phenomena. Such methods are usually expressed in terms of differential equations, however tumor composition involves specific cellular structure and can demonstrate probabilistic nature, often requiring tailor-made approaches. In this context, cell-based models allow monitoring independent single parameters, which might vary in both time and space. By relying on extant tumor growth models in the literature, this study introduces cellular-automata simulation strategies that admit heterogeneous cell population while capturing both single-cell and cluster-cell behaviors. In this agent-based computational model, tumor cells are limited to follow four possible courses of action, namely: proliferation, migration, apoptosis or quiescence. Despite the apparent simplicity of those actions, the model can represent different complex tumor features depending on parameter settings. This study virtualized five different scenarios, showcasing model capabilities of representing tumor dynamics including alternate dormancy periods, cell death instability and cluster formation. Implementation techniques are also explored together with prospective model expansion towards deterministic features. The proposed stochastic cellular automaton model is able to effectively simulate different scenarios regarding tumor growth effectively, figuring as an interesting tool for in silico modeling, with promising capabilities of expansion to support research in mathematical oncology, thus improving diagnosis tools and/or personalized treatment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-01-08
    Description: The United Nations is dedicated to bringing countries together to solve international problems and to shape a better future. One of the greatest challenges facing society today is meeting the population’s basic needs, while protecting the environment, hence the UN Sustainable Development Goals — 17 goals to overcome current and future sustainability challenges. We incorporate the 17 goals into a simplified global socio-ecological model to analyze what actions are necessary to promote a desirable future. We find that the current population size and resource use are not sustainable with any one goal or combination of goals. In the sustainable scenarios described here the global population decreases, while maintaining higher consumption levels. We estimate that sustainability hinges on maintaining an equivalence between natural and agricultural land areas and the human population — approximately 1ha of land per person is necessary to promote human well-being and environmental sustainability. Furthermore, we find that long-term sustainability hinges on changes within the next 50 years and goals that solely target environmental degradation or consumption are too slow to drive sustainability. Social progress is occurring much faster than environmental progress, therefore actions that target shifts in power dynamics, inequality, development and education in lower income countries should be prioritized to maintain ecosystem services and promote well-being. The goals that incorporate a combination of socio-ecological policies (SDGs 3,6,8,9,10,11) promote well-being and sustainability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-01-08
    Description: Coral reefs are complex habitats that contain very high biodiversity and provide different ecosystem services. In the Coral Triangle, however, various major benthic components are still understudied. This can limit our understanding of coral reef community dynamics, especially in the presence of a changing climate coupled with local disturbances (e.g., decreased water quality). This study describes the benthic community structure of an ecologically and economically important coral reef system in the central Philippines through characterizing the assemblages of three major components (hard corals, octocorals, and sponges) among sites and stations with varying environmental conditions (i.e., exposure to monsoons, water quality levels). Results reveal significant variations in the mean percentage covers of hard corals, octocorals, and sponges at the site and station levels (ANOVA, p 〈 0.05), with hard corals dominating in Site 1, which is more exposed to the southwest monsoon, and Site 3, which is an embayed and unexposed site with low water quality, while soft corals dominated in Site 2, which is more exposed to the northeast monsoon. Multivariate analyses also revealed significant variations in the benthic community structure at different spatial scales (ANOSIM, p 〈 0.05). Interestingly, even stations within a site had significant variations in community structure, with different taxa being dominant. This study highlights the importance of conducting more detailed analyses of understudied taxa (i.e., octocorals and sponges) during coral reef surveys to improve our understanding of coral reef community dynamics that is very important for management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-01-08
    Description: Isoflavones are important chemical components in Pueraria species with various biological activities. This study proposed an integrated strategy combining feature-based molecular networking (FBMN), chemometrics and activity evaluation for isoflavone analysis in the roots of P. lobate (PLR) and P. thomsonii (PTR). Based on the strategy, a total of 68 isoflavones were annotated in the two Pueraria species, and 11 significant difference isoflavones between PLR and PTR were identified by chemometric methods. Additionally, the correlation coefficient between the characteristic isoflavones and hypoglycemic activity were calculated, and 7 isoflavones were further confirmed as bioactive marker compounds. This approach provided guidance for the discovery of active markers among different products.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-01-08
    Description: The unique flavor of Pixian douban (PXDB) is widely acknowledged to be associated with its maturation process. However, there is limited knowledge about the non-volatile metabolites that contribute to this flavor. To bridge this gap, this study employed a metabolomics approach and a feature-based molecular network (FBMN) analysis to investigate the non-volatile metabolite fingerprints of PXDB during its two-year maturation process. Specifically, the FBMN tool was utilized to annotate the flavonoid, amide derivatives, and lipid components of PXDB for the first time. Subsequently, the MolNetEnhancer tool was employed to complement the FBMN annotation and identify eight substructural components. Finally, metabolomics analysis was carried out to identify 45 key metabolites involved in flavor formation across 10 major metabolic pathways (p 〈 0.05). Overall, the findings of this study have significantly expanded our understanding of the non-volatile metabolite fingerprinting and flavor formation mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-01-08
    Description: The Sirex noctilio’s climatic adaption and rapid proliferation have caused Pinus mortality worldwide. The infestation combines the early effect of female S. noctilio gland secretion and the spreading symbiotic fungus Amylostereum areolatum. 'Lipidomics' is the study of all non-water-soluble components of the metabolome. Most of these non-water-soluble compounds correspond to lipids which can provide information about a biological activity, an organelle, an organism, or a disease. Using HPLC-MS/MS based lipidomics, 122 lipids were identified in P. radiata needles during S. noctilio infestation. Phosphatidic acids, N-acylethanolamines, and phosphatidylinositol-ceramides accumulated in infested trees could suggest a high level of phospholipases activities. The phosphatidylcholines were the most down-regulated species during infection, which could also suggest that they may be used as a substrate for up-regulated lipids. The accumulation of very long-chain fatty acids and long-chain fatty acids during the infestation could imply the tree defense response to create a barrier in the drilled zone to avoid larvae development and fungus proliferation. Also, the growth arrest phase of the trees during the prolonged infestation suggests a resistance response, regulated by the accumulation of NAE, which potentially shifts the tree energy to respond to the infestation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-01-08
    Description: Sediment porewater dialysis passive samplers, also known as “peepers,” are inert containers with a small volume of water (usually 1–100 mL) capped with a semi-permeable membrane. When exposed to sediment over a period of days to weeks, chemicals (typically inorganics) in sediment porewater diffuse through the membrane into the water. Subsequent analysis of chemicals in the peeper water sample can provide a value that represents the concentrations of freely-dissolved chemicals in sediment, a useful measurement for understanding fate and risk. Despite more than 45 years of peeper uses in peer-reviewed research, there are no standardized methods available, which limits the application of peepers for more routine regulatory-driven decision making at sediment sites. In hopes of taking a step towards standardizing peeper methods for measuring inorganics in sediment porewater, over 85 research documents on peepers were reviewed to identify example applications, key methodological aspects, and potential uncertainties. The review found that peepers could be improved by optimizing volume and membrane geometry to decrease the necessary deployment time, decrease detection limits, and provide sufficient sample volumes needed for commercial analytical laboratories using standardized analytical methods. Several methodological uncertainties related to the potential impact of oxygen presence in peeper water prior to deployment and oxygen accumulation in peepers after retrieval from sediment were noted, especially for redox-sensitive metals. Additional areas that need further development include establishing the impact of deionized water in peeper cells when used in marine sediment and use of pre-equilibration sampling methods with reverse tracers allowing shorter deployment periods. Overall, it is expected that highlighting these technical aspects and research needs will encourage work to address critical methodological challenges, aiding in the standardization of peeper methods for measuring porewater concentrations at contaminated regulatory-driven sediment sites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-01-08
    Description: Addressing climate change and reducing greenhouse gas emissions are critical global challenges. As a substantial contributor to emissions, animal-based products are under increasing scrutiny. Animal-free dairy products provide a potential. Although understanding consumer acceptance of these products is crucial, the literature on this topic is scant. This study investigates the perception and acceptance of animal-free dairy among German consumers (N = 1,487) using an online survey with five information treatments (general and topic-specific information about animal-free cheese, gene-modified organisms, animal welfare, environmental concerns, and farmer existence). The acceptance of animal-free dairy was measured by the respondents' willingness to try, substitute, buy, and regularly buy animal-free cheese. Acceptance was found to be comparatively lower than in past studies, although still prevalent among 45.65 % of consumers. Notably, there were significant variances in consumers' perspectives toward animal-free cheese, causing an irregular distribution in their willingness statements. Multi-group analysis using partial least squares structural equation modeling showed that consumer acceptance did not significantly differ between treatment groups. However, individual analysis revealed that the willingness to buy animal-free cheese was positively influenced by perceived benefits and perceived sustainability. Conversely, perceived risks decreased this willingness. Positive attitudes toward farming and knowledge about farming increased perceived risks, while high social trust lowered them. Attitudes toward animal welfare and social trust positively influenced perceived benefits. These findings can be applied to inform and facilitate market introduction strategies of animal-free dairy products for producers and policy makers, providing insights into consumer acceptance of these products in Germany.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-01-08
    Description: The oceans play a major role in moderating atmospheric CO2 levels. Enhanced CO2 uptake into ocean waters can be achieved by the provision of appropriate cations to the surface ocean, an approach known as ocean alkalinity enhancement (OAE). Here, we present a calcium ion battery approach that enhances alkalinity via electrochemical manipulation of seawater calcium concentrations. We demonstrate the efficacy of this approach using a potassium barium iron cyanide [K2BaFe(CN)6] (PBFC) electrode, a Prussian blue analogue, to move calcium ions from one reservoir of seawater to another. Using material and electrochemical characterization of the Ca2+ ion insertion and expulsion properties of PBFC in synthetic seawater, we determine the repeatability of Ca2+ ion insertion and expulsion from the PBFC electrode. Our analyses prove a 2.75 % increase in seawater alkalinity via the PBFC electrode, which yields 2.64 mg CO2 (0.72 mg C) uptake per liter of seawater. This proof-of-concept method offers a unique, low-cost, energy efficient electrochemical approach for atmospheric carbon dioxide removal that can combine with marine-based renewable energy to enable a new family of effective, scalable climate change solutions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-01-09
    Description: Seismic data represent one of the most valuable resources for investigating the internal structure and composition of the earth. One of the first people to deduce earth structure from seismic records was Mohorovičić, a Serbian seismologist who, in 1909, observed two distinct traveltime curves from a regional earthquake. He determined that one curve corresponded to a direct crustal phase and the other to a wave refracted by a discontinuity in elastic properties between crust and upper mantle. This worldwide discontinuity is now known as the Mohorovičić discontinuity or Moho for short. On a larger scale, the method of Herglotz and Wiechart (see, for example, Gubbins, 1992) was first implemented in 1910 to construct a 1-D whole earth model. The method uses the relationship between angular distance and ray parameter to determine velocity as a function of radius within the earth.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-01-09
    Description: Over the past 50 years, our understanding of the role of trace elements in animals and humans has significantly expanded. Some elements have been recognized as essential for vital body functions. Since the 1950s, with advances in histochemical and spectrometric methods, the distribution of trace elements in different structures of the brain has been studied. Scientific knowledge about the effects of trace elements on brain function has accumulated tremendously as well. Essential trace elements are considered as micronutrients, which are not produced in the body and mainly come from food. Different brain regions such as the cortex, white matter, basal ganglia, and the limbic system have various developmental trajectories and the so-called “critical periods.” The correctness of development is determined by the course of various processes (proliferation, migration, myelination, differentiation, etc.). Thus, it could be assumed that an imbalance of essential trace elements in critical periods of brain maturation can lead to detrimental morphofunctional consequences and impaired brain development. In this chapter, we have reviewed the most studied trace elements that are involved in neurogenesis, such as Fe, Zn, I, Se, Cu, and Mn, and their possible contribution to the manifestation of neurological disorders.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-01-12
    Description: Sponges are ecologically important benthic organisms with many important functional roles. However, despite increasing global interest in the functions that sponges perform, there has been limited focus on how such functions will be impacted by different anthropogenic stressors. In this review, we describe the progress that has been made in our understanding of the functional roles of sponges over the last 15 years and consider the impacts of anthropogenic stressors on these roles. We split sponge functional roles into interactions with the water column and associations with other organisms. We found evidence for an increasing focus on functional roles among sponge-focused research articles, with our understanding of sponge-mediated nutrient cycling increasing substantially in recent years. From the information available, many anthropogenic stressors have the potential to negatively impact sponge pumping, and therefore have the potential to cause ecosystem level impacts. While our understanding of the importance of sponges has increased in the last 15 years, much more experimental work is required to fully understand how sponges will contribute to reef ecosystem function in future changing oceans.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-02-07
    Description: This literature review presents major environmental indicators and their optimum variation ranges for the prevalence of Vibrio parahaemolyticus in the marine environment by critically reviewing and statistically analyzing more than one hundred studies from countries around the world. Results of this review indicated that the prevalence of Vibrio parahaemolyticus in the marine environment is primarily responsive to favorable environmental conditions that are described with environmental indicators. The importance of environmental indicators to the prevalence of Vibrio parahaemolyticus can be ranked from the highest to lowest as Sea Surface Temperature (SST), salinity, pH, chlorophyll a, and turbidity, respectively. It was also found in this study that each environmental indicator has an optimum variation range favoring the prevalence of Vibrio parahaemolyticus. Specifically, the SST range of 25.67 ± 2 °C, salinity range of 27.87 ± 3 ppt, and pH range of 7.96 ± 0.1 were found to be the optimum conditions for the prevalence of Vibrio parahaemolyticus. High vibrio concentrations were also observed in water samples with the chlorophyll a range of 16–25 μg/L. The findings provide new insights into the importance of environmental indicators and their optimum ranges, explaining not only the existence of both positive and negative associations reported in the literature but also the dynamic associations between the Vibrio presence and its environmental drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-02-07
    Description: The present worldwide study of 31 off-shore back-arc basins and subbasins (BABs) identifies their principal characteristics based on a broad spectrum of geophysical and subduction-related parameters. This synthesis is next used to identify trends in evolution of the back-arc basins for improving our understanding of subduction systems in general. The analysis, based on the present plate configuration, demonstrates that geophysical characteristics and fate of the back-arc basins are essentially controlled by the nature of the overriding plate, which controls lithosphere thermo-compositional structure and rheology. The plate nature governs the length of the extensional zone in back-arc settings along the trench, the efficiency of lithosphere stretching, BAB crustal structure, its buoyancy and bathymetry. Subduction dip angle apparently controls the location of slab melting zone and the efficiency of slab roll-back with feedback link to other parameters. By tectonic nature of the overriding plate (the downgoing plate is always oceanic) the back-arc basins are split into active BABs formed by ocean-ocean, arc-ocean, and continent-ocean convergence, and extinct back-arc basins. By geophysical characteristics, BABs formed on continental plates are subdivided into active BABs with and without seafloor spreading, and extinct BABs are subdivided to Pacific, possibly formed on oceanic plates, and non-Pacific with reworked continental or arc fragments. Six types of BABs are distinctly different. Extension of the overriding oceanic plate above a steeply dipping old oceanic plate, preferentially subducting nearly westwards, forms large deep back-arc basins with a thin oceanic-type crust. In contrast, BABs on the overriding continental or arc plates form at small opening rates and often by shallow subduction of younger oceanic plates with random subduction orientation; these BABs have small size, shallow bathymetry, and hyperextended or transitional ~20 km thick arc- or continental-type crust typical of passive margins. The presence of a 2–5 km thick high-Vp lowermost crustal layer, characteristic of BABs in all settings, indicates the importance of magmatic underplating in their crustal growth. Conditions required for the initiation of a back-arc basin and transition from stretching to seafloor opening depend on the nature of the overriding plate. BABs formed on oceanic plates always evolve to seafloor spreading. BABs formed on continental or arc plates require a long spreading duration with large (〉8 cm/y) opening rates and crustal thinning factor 2.8–5.0 to progress from crustal extension to seafloor spreading; such transition does not happen in back-arc basins formed behind a shallow subduction (〈45o) of a young (〈40 My) oceanic plate. The nature of the overriding plate also determines the fate of back-arc basins after termination of lithosphere extension: extinct Pacific back-arc basins with oceanic-type crust evolve towards deep old “normal” oceans, while shallow non-Pacific BABs with low heat flow and thick crust are likely to preserve their continental or arc affinity. BABs do not follow oceanic cooling plate model predictions. Distinctly different geophysical signatures for spreading at mid-ocean ridges and for back-arc seafloor spreading are caused by a principally different nature of their dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-02-07
    Description: Highlights • The hydrothermal fluids were sampled from a neovolcanic ridge within a non-transform offset. • Serpentinization has been involved on the pathway of hydrothermal circulation • The fluids are strongly affected by phase separation with extremely high Cl content in brine phase • A hybrid model of hydrothermal circulation controlled by tectonic and magmatic activities simultaneously was proposed. The Daxi Vent Field (DVF) is located on a neovolcanic ridge within a non-transform offset at water depths of ∼3500 m, on the Carlsberg Ridge, northwest Indian Ocean. In 2017, we investigated this site using the submersible Jiaolong and collected two fluid samples from orifices of chimneys named “Buddha's Hands” and “A1”, about 37 m apart. Their in-situ measured temperatures are 273 °C and 272 °C, respectively. The Buddha's Hands fluid is highly Cl-enriched (928 mM), while the A1 fluid is Cl-depleted (303 mM). This indicates that they have undergone phase separation. The segregated phases must have remixed during the ascent because the vapor and brine phases sampled cannot be produced by the same phase separation history without other processes. Olivine-rich and/or ultramafic mantle rocks must have been involved during the hydrothermal circulation as evidenced by high dissolved H2 (7.07 mM) and methane (0.884 mM) concentrations, a depletion in B relative to seawater, high Ca and low K, and large positive Eu anomalies. The Fe content in Buddha's Hands fluid is extremely high (11,900 μM) as a result of phase separation, while the Cu concentrations in both fluids are relatively low due to entrainment of seawater which results in precipitation of Cu-rich sulfides in the subseafloor. The concentrations of Zn, Ag, Ga, Sn, Sb, and Cd in A1 vent fluid are significantly elevated due to generation of acidity and remobilization of these elements as Cu-rich sulfides are deposited. The subseafloor processes and associated geochemistry of hydrothermal fluids at the DVF are distinct from other mid-ocean ridge hydrothermal systems due to the specific geologic setting. Hence a hybrid model of hydrothermal circulation is proposed. This study broadens our understanding of the hydrothermal processes occurring in areas of NTO setting and provides more information on mass fluxes discharging from hydrothermal systems and the formation of sulfide deposits.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-02-07
    Description: Since the 1980s, the Common Fisheries Policy (CFP) has shaped European fisheries. It has often been criticised for being too prescriptive and, above all, for failing to protect either fishermen or ecosystems. The last reform dates back to the early 2010 s and has led to a slight but slow improvement in the state of ecosystems. Given that the CFP is in the process of evaluation, a group of French fishery scientists set up an initiative to add to the debate on what should be retained, reinforced or added to a possible new reform. This initiative came 10 years after a previous manifesto that presented their vision for fisheries in Europe. Four major issues emerged from the current initiative: (1) a need for transparency and simplification in fisheries management, (2) a need for more consultation and dialogue between stakeholders, (3) the urgency of the situation in the Mediterranean Sea, and (4) the necessity of putting into practice all research developments for an ecosystem approach to fisheries. Compared to 10 years ago, the response of scientists shows that the focus is no longer on achieving the maximum sustainable yield, but rather on the following steps to protect ecosystems and fisheries. An ecosystem approach to fisheries remains indispensable for both ecosystems and fishing activities. To this end, scientists put forward numerous proposals to improve the CFP, acknowledging that the final solutions should emerge from consultation with stakeholders. Climate change, an issue raised much more than in the manifest, reinforces the need to act.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-02-07
    Description: Highlights: • Trematodes can affect gastropods' biochemical condition and grazing rates • L. littorea fed more on invasive G. vermiculophylla than on native F. vesiculosus • Trematode-infected snails fed on average 18 % more than uninfected snails • An increase in temperature induced the mobilization of energy reserves • Trematode-induced glycogen decrease might reduce gastropod heat stress tolerance Abstract: Marine bioinvasions are of increasing attention due to their potential of causing ecological and economic loss. The seaweed Gracilaria vermiculophylla has recently invaded the Baltic Sea, where, under certain conditions, it was found to outcompete the native alga Fucus vesiculosus. Parasites of grazers and temperature are among the potential factors which might indirectly modulate the interactions between these co-occurring algae through their single and combined effects on grazing rates. We tested the temperature and parasitism effects on the feeding of the gastropod Littorina littorea on F. vesiculosus vs. G. vermiculophylla. Uninfected and trematode-infected gastropods were exposed to 10, 16, 22, and 28 center dot C for 4 days while fed with either algae. Faeces production was determined as a proxy for grazing rate, and HSP70 expression, glycogen and lipid concentrations were used to assess the gastropod's biochemical condition. Gracilaria vermiculophylla was grazed more than F. vesiculosus. Trematode infection significantly enhanced faeces production, decreased glycogen concentrations, and increased lipid concentrations in the gastropod. Warming significantly affected glycogen and lipid concentrations, with glycogen peaking at 16 center dot C and lipids at 22 center dot C. Although not significant, warming and trematode infection increased HSP70 levels. Increased faeces production in infected snails and higher faeces production by L. littorea fed with G. vermiculophylla compared to those which fed on F. vesiculosus, suggest parasitism as an important indirect modulator of the interaction between these algae. The changes in the gastropod's biochemical condition indicate that thermal stress induced the mobilization of energy reserves, suggesting a possible onset of compensatory metabolism. Finally, glycogen decrease in infected snails compared to uninfected ones might make them more susceptible to thermal stress.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-02-07
    Description: Highlights: • Higher representation of picophytoplankton in land-terminating glacier fjord. • Smaller phytoplankton cells associated with glacial retreat. • Intermediate baroclinic circulation influences phytoplankton distribution. • Glacial retreat likely to have major implications for summer productivity. Abstract: Along Greenland's coastline, the magnitude and timing of primary production in fjords is influenced by meltwater release from marine-terminating glaciers. How local ecosystems will adapt as these glaciers retreat onto land, forcing fundamental changes in hydrography, remains an open question. To further our understanding of this transition, we examine how marine- and land-terminating glaciers respectively influence fjord bloom phenology. Between spring and autumn 2019, we conducted along-fjord transects of hydrographic variables, biogeochemical properties and pico- and nanophytoplankton counts to illustrate the contrasting seasonal bloom dynamics in the fjords Nuup Kangerlua and Ameralik. These fjords are in the same climatic region of west Greenland but influenced by different glacial structures. Nuup Kangerlua, a predominantly marine-terminating system, was differentiated by its sustained second summer bloom and high Chl a fluorescence in summer and autumn. In Ameralik, influenced by a land-terminating glacier, we found higher abundances of pico- and nanophytoplankton, and high cyanobacteria growth in autumn. The summer bloom in Nuup Kangerlua is known to be coincident with subglacial freshwater discharge sustaining renewed nutrient supply to the fjord. We observe here that the intermediate baroclinic circulation, which creates an inflow at subsurface depths, also plays an important role in increasing nutrient availability at shallower depths and potentially explains the distribution of primary producers. Our observations suggest that the retreat of marine-terminating glaciers onto land, with consequent increases in surface water temperature and stratification, and reduced light availability, may alter the magnitude, composition, and distribution of summer productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-02-07
    Description: Highlights: • Networks indicators reveal structure of the food webs depicted by ecosystem models. • Fishing mortality affects the structure and functioning of the food webs. • Increasing fishing mortality of all fish groups triggers strong indicator response. • Overfishing endangers ecosystem resilience. Marine ecosystems are exposed to multiple stressors, mainly fisheries that, whenever mismanaged, may cause irreversible damages to whole food webs. Ecosystem models have been applied to forecast fisheries impact on fish stocks and marine food webs. These impacts have been studied through the use of multiple indicators that help to understand ecosystem responses to stressors. This study focused on a category of ecological indicators derived from the network theory to quantify energy flows inside the food web. These indicators were computed using two ecosystem models applied to the Eastern English Channel (i.e. Atlantis and OSMOSE). This work aimed at investigating how several ecological network indicators respond to different levels of fishing pressure and evaluating their robustness to model structure and fishing strategies. We applied a gradient of fishing mortality using two ecosystem models and carried out ecological network analysis to obtain network-derived indicators. The results revealed that the indicators response is highly driven by the food web structure, although the model assumptions buffered some results. The indicators computed from OSMOSE outputs were more sensitive to changes in fishing pressure than those from Atlantis. However, once the food web from Atlantis was simplified to mimic the structure of OSMOSE model, the indicators of the modified Atlantis became more sensitive to the intensity of fishing pressure. The indicators related to amount of energy flow and to the organization of the flows in the food web were sensitive to the increase of fishing mortality for all fishing strategies. These indicators suggested that increasing fishing mortality jeopardizes the amount of energy mobilized by the food webs and simplifies the ecological interactions, which has implications for the resilience of marine ecosystems. The study shed light on the trophic networks structure and functioning of the ecosystems whenever exposed to distur-bances. Furthermore, these indicators might be adequate for whole ecosystem assessments of health and contribute to ecosystem management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-02-07
    Description: Highlights • Oceanic nutrient supply from seabird guano is poorly constrained by field observations. • This was assessed for guano from caught-and-released North Atlantic seabirds. • Guano released nutrients and relieved in situ phytoplankton nutrient limitation. • Guano was modelled to potentially be a major nutrient supply term in summer. • Declining pelagic seabird populations will impact this function. Abstract Nutrients supplied via seabird guano increase primary production in some coastal ecosystems. A similar process may occur in the open ocean. To investigate this directly, we first measured bulk and leachable nutrient concentrations in guano sampled in the North Atlantic. We found that guano was strongly enriched in phosphorus, which was released as phosphate in solution. Nitrogen release was dominated by reduced forms (ammonium and urea) whilst release of nitrate was relatively low. A range of trace elements, including the micronutrient iron, were released. Using in-situ bioassays, we then showed that supply of fresh guano to ambient seawater increases phytoplankton biomass and photochemical efficiencies. Based on these results, modelled seabird distributions, and known defecation rates, we estimate that on annual scales guano is a minor source of nutrients for the surface North Atlantic. However, on shorter timescales in late spring/summer it could be much more important: Estimates of upper-level depositions of phosphorus by seabirds were three orders of magnitude higher than modelled aerosol deposition and comparable to diffusion from deeper waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-02-07
    Description: Precipitation chemistry data provide important information for environmental studies on large-scale element cycling and anthropogenic impacts on our atmosphere, but also for hydrochemical models and groundwater recharge estimations via the Chloride Mass Balance method. Such recharge data play a crucial role in groundwater management, particularly in (semi-)arid areas. Unfortunately, precipitation analyses are often scarce in such regions. This also applies to the Arabian Peninsula, including southern Oman. To overcome this lack of rain chemistry data, we developed a strategy for automatic weekly bulk precipitation sampling, using recently designed automatic rainwater samplers. The integral samples were gathered along an elevation gradient from the Salalah coast to the Dhofar mountains during the Indian Ocean Monsoon seasons 2017 and 2018. Our major ion analyses of the rainwater samples revealed considerable temporal and spatial heterogeneity, in terms of ion proportions and absolute concentrations. Samples from the coast were relatively salty (EC mostly 〉3000 μS cm−1) and rich in Na+ and Cl−, reflecting small rain amounts and a sea spray effect. Further inland, solute concentrations were lower, partly due to more precipitation, and ions such as Ca2+ and SO42− gained importance, probably due to calcite and gypsum dust. This pattern reflects the interplay between solute availability (influenced by regional geology, wind direction at different altitudes, and wind speed) and precipitation amounts. Cl−/Br− ratios were fairly uniform and scattered around the seawater value. Combining ion concentrations and rain amounts yielded bulk depositions that showed an erratic pattern along the elevation gradient, i.e., depositions did not decrease steadily in inland direction, as one may assume. This suggests that the occasionally reported approach of collecting a few opportunistic grab samples at a single site is unlikely to yield data that are representative for a larger coastal study area.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-02-07
    Description: Cold-water corals (CWCs) are considered vulnerable to environmental changes. However, previous studies have focused on adult CWCs and mainly investigated the short-term effects of single stressors. So far, the effects of environmental changes on different CWC life stages are unknown, both for single and multiple stressors and over long time periods. Therefore, we conducted a six-month aquarium experiment with three life stages of Caryophyllia huinayensis to study their physiological response (survival, somatic growth, calcification and respiration) to the interactive effects of aragonite saturation (0.8 and 2.5), temperature (11 and 15 °C) and food availability (8 and 87 μg C L−1). The response clearly differed between life stages and measured traits. Elevated temperature and reduced feeding had the greatest effects, pushing the corals to their physiological limits. Highest mortality was observed in adult corals, while calcification rates decreased the most in juveniles. We observed a three-month delay in response, presumably because energy reserves declined, suggesting that short-term experiments overestimate coral resilience. Elevated summer temperatures and reduced food supply are likely to have the greatest impact on live CWCs in the future, leading to reduced coral growth and population shifts due to delayed juvenile maturation and high adult mortality.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-02-07
    Description: Marine ecosystem dynamics in the context of climate change is a growing scientific, political and social concern requiring regular monitoring through appropriate observational technologies and studies. Thus, a wide range of tools comprising chemical, biogeochemical, physical, and biological sensors, as well as other platforms exists for marine monitoring. However, their high acquisition and maintenance costs are often a major obstacle, especially in low-income developing countries. We designed an advanced low-cost synoptic marine ecosystem observation system that operates at relatively high temporal frequencies, named PlasPi TDM. This instrument is an improved version of the camera system (PlasPI marine cameras) developed in 2020 by Autun Purser from the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (Germany), and collaborators. It incorporates several innovative developments such as multispectral (records the spectrum of any object photographed), temperature and pressure sensors. The PlasPi TDM operates to a depth of 200 m. The various field deployments demonstrate the operational capability of the PlasPi TDM for different applications and illustrate its considerable potential for in-situ observations and marine surveillance in Africa. This device is intended as an open-source project and its continued development is encouraged for a more integrated, sustainable and low-cost ocean observing system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-02-07
    Description: Potential temporal and causal connections among various geologic events have long been discussed in the geological literature. More recently, signs of common periodicities in these episodes have been reported. In this study of correlation and cyclicity of geologic occurrences, we review and synthesize previous work, and utilize the newest data for various major events over the the last 260 My. These include, 1) high-quality radio-isotopic age determinations (U-Pb zircon and 40Ar/39Ar) for continental flood-basalt (CFB) eruptions; 2) the dates of widespread intervals of ocean anoxia; 3) the latest published dates of marine and non-marine extinction events, 4) hyper-thermal climate intervals and 5) the occurrences of stratigraphic Hg anomalies, and non-radiogenic Os-isotope anomalies as potential proxies for large-scale basaltic volcanism. Times of at least 13 of 17 intervals of anoxic oceans are marked by stratigraphic Hg-anomalies, pointing to contemporaneous LIP eruptions, and 5 anoxic intervals in the warm Cretaceous Period are correlated with marine Os-isotope ratios suggesting potential LIP hydrothermal activity. Nine of the ocean-anoxic intervals are thus far correlated with times of marine-extinction episodes, and 8 of those anoxia/extinction co-events are significantly correlated with the ages of the well-dated CFB eruptions. Seven of the marine-extinction events and associated CFB volcanism are coeval with extinctions of non-marine vertebrates, supporting global catastrophic volcano-climatic episodes devastating both marine and terrestrial environments. New digital circular spectral analyses revealed significant underlying cycles of ∼32.5 My and ∼ 26.2 My in the ages of the anoxic events and marine extinctions. Spectral analysis of the latest high-quality ages of the CFBs resulted in similar significant periodicities of 32.8 My and 12.9 My (∼26.2/2 My harmonic). High-frequency periods at various harmonics appear at ∼6.4 My, 8.4 My and 9.7 My in each of the three spectra. These findings support a multi-factor extinction scenario in which release of massive amounts of CO2 and perhaps CH4 mostly from CFB magmas (and in some cases sub-volcanic intrusions into carbon-rich deposits), led to very warm climate intervals with near-lethal to lethal hyper-thermal conditions on land and in the sea. Concurrent release of halogens from CFB eruptions could also have decimated the global ozone layer. In many cases, the warm oceans became acidic, and developed anoxic to euxinic conditions, even up to the ocean surface, contributing to the causes of the marine extinctions. Additionally, four extinction events (late Eocene, end-Cretaceous, end-Jurassic and mid-Norian) correlate closely with the ages of the 4 largest impacts (craters ≥100 km in diameter) over the same period, capable of producing severe climatic effects and extinctions. The potential dominant underlying ∼33-My and 26-My cycles, reported in these and other correlated tectonic, climatic, and biotic events over the last 260 My and beyond, are likely related to the Earth's tectonic-volcanic rhythms, but the similarities with known Milankovitch Earth orbital periods and their amplitude modulations, and with known Galactic cycles, suggest that, contrary to conventional wisdom, the geological events and cycles may be paced by astronomical factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-02-07
    Description: We analyse reflection seismic profiles across the outer accretionary wedge at the convergent New Zealand Hikurangi margin. We identify several, in some case stacked, bottom simulating reflections (BSRs). We interpret these multiple BSRs to record changes in gas hydrate stability. With the aid of gas hydrate systems modelling, we identify two geological drivers that affect gas hydrate stability: (1.) rapid sedimentation in trough basins and (2.) uplift and erosion of thrust ridges. Rapid sedimentation in trough basins buries gas hydrates that formed above the former base of gas hydrate stability (BGHS). Locally, we observe a remnant BSR from this process, likely due to residual gas and possibly gas hydrate. The combined effects of uplift and erosion, in contrast, result in the preservation of a remnant BSR within the gas hydrate stability zone, whilst a new BSR forms locally at the present-day BGHS. However, the limited occurrence of double BSRs in seismic data and the model both suggest that the formation of a deeper BSR is limited by gas supply. Formation of significant gas hydrate at this deeper level only occurs in areas of focused gas migration. This slow formation of gas hydrate also has implications for the response to glacio-eustatic sea-level rise: gas hydrates are more likely to accumulate above the BGHS corresponding to the last glacial maximum, whereas only small amounts formed above the deeper present-day BGHS. Hence, future bottom water warming will, at least initially, not lead to significant methane release from dissociating gas hydrates in deep water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-02-07
    Description: The heterogenous magma supply at ultraslow spreading ridges creates diverse seafloor morphologies and lithospheric structures, which in turn generate a large variability in marine magnetic anomalies. The variability brings difficulties to interpret the evolution of oceanic lithosphere. On the other hand, different magnetic signatures of different seafloors provide an opportunity to identify the modes of seafloor spreading on the ultraslow spreading ridges. Here, we modeled several across-axis magnetic profiles selected from the Gakkel Ridge, Southwest Indian Ridge and Mid-Cayman Spreading Center to explore the lithospheric structure and seafloor spreading processes. Considering conjugate flanks, we observed three modes of seafloor spreading, Magmatic vs Magmatic, Magmatic vs Tectonic, and Tectonic vs Tectonic, on the three ultraslow spreading ridges. These three spreading modes reflect a strong, intermediate, and starved magma supply, respectively. Furthermore, four alternances of the different spreading modes were identified including the Magmatic vs Magmatic to Magmatic vs Tectonic, Magmatic vs Tectonic to Tectonic vs Magmatic, Tectonic vs Tectonic to Magmatic vs Magmatic, and Mixed. These alternances of spreading modes in across-axis direction suggest oscillations of the magma supply at different levels. Variation in the modes of seafloor spreading on four nearby profiles over the Mid-Cayman Spreading Center reveals the evolution of magma supply along the axis of this short ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-02-07
    Description: Farming on hillslopes often affects the accumulation and loss of soil organic matter (SOM) depending on slope position and cropping patterns. Most hillslope studies focus on soil movement to characterize SOM turnover under erosive conditions. In this study, we trace erosion and characterize agronomic practices erosive impacts on SOM translocation and transformation along geomorphic positions. To achieve this, we assessed the horizontal distribution (upper 15 cm) and vertical distribution (to 100 cm profiles) of soil δ15N and δ13C isotope abundance individually. We mapped the spatial distribution of δ13C, δ15N, and SOM turnover indices as a novel approach to tracing erosion and degradation of SOM in the field. Except for tillage (conventional vs. reduced tillage), other individual agricultural practices (residue removal with no cover crop vs. retaining residuals, cover cropping, and fertilizer 0, 40, and 80 kg ha-1 nitrogen) caused no significant shifts in δ15N and δ13C values in topsoil (0–15 cm). Among the evaluated factors, topography and depth predicted soil δ15N and δ13C profiles. Trends in δ13C vs. δ15N showed a wider range of δ13C values in topsoil of upslope plots under reduced tillage, while in the depositional location, conventional tillage had the same effect. This suggests erosion under reduced tillage occurred. Erosion and accelerated decomposition gradually slowed δ13C enrichment with soil depth. Digital soil mapping approach depicted low continuity of δ13C vs. high continuity of δ15N with geomorphic position We attributed the intermediate δ13C values, and steeper slope of δ13C against logarithm of soil organic carbon (SOC) across the slope to erosion and high SOM turnover, particularly of recently added plant inputs. Current results support the prediction of intensive vs. conservation practices’ effects on upslope soil stability and the fate of SOM in both topsoil and at depth of sloping farmlands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-02-07
    Description: Highlights • Closure of the Tethyan Seaway led to precipitation increase in South Asia but decrease in North Africa. • Closure of the Tethyan Seaway led to enhanced moisture transport from North Africa to South Asia. • Global cooling led to precipitation decrease in North Africa and South Asia during the MMCT. Abstract The Middle Miocene was a period of prominent climatic change, marked by the Mid-Miocene Climatic Optimum (MMCO) and the subsequent global cooling due to a decline of the atmospheric CO2 concentrations (pCO2). In addition to this, the closure of the Tethyan Seaway driven by the Arab-Eurasia collision also had an important effect on the paleoclimatic changes during this period. In this study, we use the Community Earth System Model 1.2.2 (CESM 1.2.2) to simulate the effects of global cooling (i.e. pCO2 decline) and the closure of the Tethyan Seaway on the North African and South Asian climates. Our results show that the global cooling led to a precipitation decrease over both North Africa and South Asia, whereas the closure of the Tethyan Seaway resulted in a precipitation decrease over North Africa but an increase over South Asia. The opposite effects over North Africa and South Asia are due to an increased moisture transport from North Africa to South Asia induced by stronger summer atmospheric circulation when the Tethyan Seaway is closed. We further show that the reconstructed records of drying conditions over North Africa during the warming period from the late Early Miocene to the early Middle Miocene from previous studies can be partly explained by the narrowing of the Tethyan Seaway and its climatic continuing deterioration due to the subsequent final closure and global cooling. Both are precursory conditions for the formation of the Sahara desert. The stronger South Asian monsoon during the Middle Miocene transient cooling period found in previous studies can be partially attributed to the final closure of the Tethyan Seaway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-02-07
    Description: The beginning of the Mid-Pleistocene Transition (MPT) ~920 ka BP marked the expansion of northern hemisphere ice shields and caused a significant climate change in NW Europe. The MPT ended with the establishment of the 100 kyr ice age cyclicity at ~640 ka BP, due to orbital eccentricity changes. Previous studies explained the northern hemisphere cooling by cooling of sea-surface temperatures, increased sea-ice cover and/or changes in the Atlantic Meridional Overturning Circulation (AMOC) strength. We here discuss very-high resolution parametric echosounder (Parasound) imagery and sediment core analytics from a plastered drift at the eastern Campeche Bank (southern Gulf of Mexico), which was deposited under the influence of the Loop Current (LC). The LC transports warm tropical waters from the Caribbean into the Gulf via the Yucatan Channel. It is a key component of the Gulf Stream system, driving the ocean heat, salinity, and moisture transport towards the N Atlantic. The joint interpretation of reflection patterns, age constraints from color-scanning, foraminiferal stable oxygen isotopes, Sr isotope ratios (87Sr/86Sr) and core-seismic integration led to consistent conclusions about changes in LC strength across the MPT, thereby modulating the deep base level and the deposition of the plastered drift. The development of offlapping or onlapping plastered drifts, or the transition between the two termination patterns is best explained by changes in the depth of the relative deep base level and interpreted by changes in the flow regime.Initially, the Middle Miocene to Pliocene closure of the Central American Seaway caused the onset and intensification of the LC and hence a deep base level fall. The sedimentary deposits from this phase have an offlapping prograding clinoform configuration, resembling a forced regression systems tract as is known from shelf areas. The deep base level fall caused sediment truncation above 500 m present day water depth. Below 500-550 m, the offlapping succession is overlain by sigmoidal and onlapping, transgressive systems tract like clinoforms. The transition from deep base level fall prior to the MPT to deep base level rise documents the weakening of the LC during the early MPT. After the MPT, the LC continued to weaken. The related reduction of heat transport from the Western Atlantic Warm Water Pool into the North Atlantic contributes to the further cooling of the northern hemisphere. Generally, the development of offlapping or onlapping plastered drifts or the transition between the two termination patterns can be explained by changes in the depth of the relative deep base level and interpreted by changes in the flow regime.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-07
    Description: Highlights: - Microbiota manipulation has been used to improve the health and performance of several eukaryotes (e.g., humans, agricultural plants, and aquaculture animals), yet until recently remained unexplored for seaweeds. - Seaweed cultivation is the largest aquaculture industry by volume and is rapidly expanding. Technological innovations are needed to improve productivity and meet future global demands. - Bacteria are known to promote growth, assist reproduction, and improve disease resistance in seaweeds. - Knowledge of seaweed–bacterial symbioses has recently been applied to manipulate host microbiota with demonstrated benefits to seaweeds at the laboratory scale. This provides a realistic and practical opportunity to use these at the scale required for seaweed aquaculture and environmental restoration. Eukaryotic hosts are associated with microbial communities that are critical to their function. Microbiota manipulation using beneficial microorganisms, for example, in the form of animal probiotics or plant growth-promoting microorganisms (PGPMs), can enhance host performance and health. Recently, seaweed beneficial microorganisms (SBMs) have been identified that promote the growth and development and/or improve disease resistance of seaweeds. This knowledge coincides with global initiatives seeking to expand and intensify seaweed aquaculture. Here, we provide a pathway with the potential to improve commercial cultivation of seaweeds through microbiota manipulation, highlighting that seaweed restoration practices can also benefit from further understanding SBMs and their modes of action. The challenges and opportunities of different approaches to identify and apply SBMs to seaweed aquaculture are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-02-07
    Description: The economics of biodiversity is gaining traction and with it the economic valuation of ecosystem services (ESS). Most current developments neglect microbial diversity, although microbial communities provide ecosystem services of great importance. Here we argue that microbial biodiversity (hereafter microbiodiversity) translates into considerable economic value which is usually not explicitly included in quantitative valuation of ecological functions to date. This omission may result in inaccurate values, potentially entailing substantial economic losses, both in private and in public decision-making, due to external effects that arise as microbiodiversity is horizontally and vertically transferred between hosts and natural environments. Microbiodiversity, an important part of biodiversity in general, occupies an irreplaceable position as a natural resource in ecosystems, because of option values derived from the evolutionary potential of microbes, especially if host-associated, and also because of their additional insurance value within changing environments. We illustrate our arguments with specific examples (microbiomes associated with humans, soil, and corals), all of which are jeopardized through anthropogenic pressure. We conclude that the consideration of microbiodiversity in economic valuation will help to find essential assets and guide decision-makers to conserve and protect the economic value of highly diverse microbial communities for future generations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-02-07
    Description: Highlights • Role of salt leaching in seafloor stability is assessed via experiments and models. • Undrained cohesive strength of clayey silt subjected to leaching decreased by 50%. • Failure occurs when flushed layer is 〉3.5 m thick and slope gradient is 〉3°. Abstract Offshore freshened groundwater (OFG) has been documented in many continental margins worldwide. OFG systems are dynamic, expanding and contracting with falling and rise sea-levels. OFG has long been thought to be an important geomorphic agent in continental margins, either via active discharge at the seafloor, which can erode depressions, or the generation of excess pore pressure, which can deform sediments and cause slope failure. It has also been proposed that OFG flow can drive the loss of sediment shear strength via salt leaching, when seawater in pores is replaced by freshwater. Here, we measure changes in the geotechnical properties of seafloor clayey silt due to salt leaching using flushing experiments, and assess the implications of these changes on the stability of siliciclastic continental margins with 2D limit equilibrium modelling. We document a ~ 50% decrease in undrained cohesive strength of seafloor sediment after flushing, as well as a decrease in its shear strength, bulk density, and moisture content, which is similar to that reported for subaerial quick clays undergoing salt leaching. When applied to a theoretical submarine domain 300 m wide by 100 m high, we estimate that salt leaching can trigger slope failure when the thickness of the flushed layer is 〉3.5 m or when the slope gradient is 〉3°. Such conditions are primarily satisfied on the continental slope or the shallow seafloor close to the shoreline. Salt leaching by OFG flow merits consideration as a potential mechanism destablising submarine sedimentary slopes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-02-07
    Description: Knowledge of temporal patterns of past explosive eruptions is necessary to understand possible future eruptive behavior. However, volcanic records based on geological reconstructions remain incomplete. This inference is true not only for remote and sparsely populated areas like the Aleutian or Kurile-Kamchatka arcs, but also for Europe, where past large explosive events are continuously recognized in the geological record. Here we report the first age and geochemical data on the violent middle to late Pleistocene explosive eruptions from the Elbrus volcanic center (Greater Caucasus), which towers over the densely populated regions in southern Russia and Georgia. We attribute six disparate ash deposits found in the terrestrial and marine sediments along the SE European margin to the Elbrus volcanic center based on major and trace element compositions of individual shards of volcanic glass and radiogenic Sr-Nd-Pb isotope compositions of bulk tephra. We suggest that these deposits represent products of five different eruptions that were dispersed over distances of more than 150–560 km from their source. Three of four eruptions are dated at 522 ± 36, 258 ± 13, and 84.6 ± 7.4 ka by a combined zircon U–Th–Pb and (U–Th)/He approach. One sample revealed an overdispersed spectrum of single crystal (U–Th)/He dates with an average of 176 ± 40 ka. Zircon characteristics and statistical deconvolution of the geochronology data suggest that this sample contains zircon crystals from two different eruptions tentatively dated at 156.5 ± 7.7 ka and 222.8 ± 13 ka. These eruption ages represent the first recognition of a suite of large pumiceous eruptions from the Elbrus volcanic center postdating the previously known explosive activity, documented by ∼800 ka old welded tuffs. These data also provide the first geochemical and geochronological characterization of both proximal and distal Elbrus tephra glasses and contribute to the global tephra database, permitting the identification of Elbrus tephras in distal terrestrial and marine paleoenvironmental archives and hence their use as paleoclimate and archaeological markers. We consider the significance of the identified tephras for paleoenvironmental research and show their potential for tephrochronological studies in the East European Plain and adjacent areas.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-02-07
    Description: Highlights: • First abundance of MPs in offshore sediments along South-Eastern Mediterranean • Mean MPs ranged between 1126 ± 1363 MPs/kg. • Most abundant shapes were fibers and films. • Most abundant polymer types were PP and PE. • Coastal landfills and wastewater discharges shaped spatial distribution of MPs. Few studies on microplastics (MPs) in the marine environment have been conducted along the Eastern part of the Mediterranean Sea and even fewer along the Lebanese coast. This study aims to determine MPs contamination for the first-time in coastal and continental shelf sediments collected along the Lebanese shores, South-Eastern Mediterranean Sea. Sediments were collected as transects in 10 sites with a total of 23 samples between 2 and 120 m depth and suspected MPs were assessed by moving farther from land-based sources. Microplastics concentrations ranged between 0 and 4500 MPs/kg of dry sediment (1126 ± 1363 MPs/kg). Polypropylene, polyethylene, polyethylene terephthalate and polystyrene were the polymers identified on micro-Raman. Coastal landfills and raw sewage effluents were identified as the main sources and routes for MPs into the Lebanese coastal marine environment. This study serves as the first database reporting MPs in continental shelf sediments in the South-Eastern Mediterranean
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...