ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismicity
  • General Chemistry
  • Cell & Developmental Biology
  • Elsevier  (4)
  • 2010-2014  (4)
  • 1935-1939
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: We analyze the seismicity of a small sector of the Northern Apennines merging data from the Italian seismic bulletin with original data collected by temporary seismic networks. Our attention is focused on the region enclosed between the Apenninic watershed and the Adriatic Sea. This portion of belt is interested by the occurrence of diffuse crustal seismicity and small-to-moderate earthquakes. In this paper we study the five small sequences with mainshock having Mw 〈 4.7 that in the past 15 years hit the area. Our interest is addressed to better understand the relationship between these events and the regional seismotectonic setting in terms of seismicity distribution and stress field. Two regions with different behavior in the seismic release can be distinguished: (i) along the watershed where seismicity is clustered at shallow depths (〈 15 km) and where strong earthquakes occurred in the past, (ii) an eastern portion where the seismicity is distributed across all of the crustal volume, locally reaching depths down to 30 km. The focal mechanism of the seismic sequences shows mainly normal fault kinematics coherent with the regional stress field. Detailed stress field analysis suggests a rotation of the principal stress axis moving from the axial part of the chain toward the Adriatic Sea to the east.
    Description: Published
    Description: 136-144
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Northern Apennines ; Stress field ; Focal mechanisms ; Seismicity ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper we present and discuss an improved picture of the seismicity distribution of the Umbria– Marche–Abruzzi Apennines as obtained through the integration of the national and the regional seismic networks operating from 2002 to 2006. During this period, both the Istituto Nazionale di Geofisica e Vulcanologia (INGV) National Seismic Network and the regional networks have been greatly improved. We compare the results of the integrated catalogue obtained in this study with the Catalogue of the Italian Seismicity between 1981 and 2001 [Castello, B., Selvaggi, G., Chiarabba, C., Amato, A., 2006. CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma.http://legacy.ingv.it/CSI )], confirming the basic known features of the seismic activity in the region, but also evidencing some original and interesting results. In particular, the new data set allows us to better define the geometry and kinematics of the crustal seismicity, which is confined to the upper 20 km and shows a clear general deepening from west to east. In the crust, we find additional evidence of extensional seismicity below the central portion of the belt and thrust/reverse faulting mechanisms at the outer fronts of the Apennines. Looking at the seismicity along the belt, it is also possible to observe aseismic regions, which could be due to either locked or creeping portions of the Apenninic fault system. At greater depth, the west-dipping seismicity distribution down to about 70 km confirms the hypothesis of a slab of Adriatic lithosphere subducted below the Apennines, but also suggests that there are strong lateral heterogeneities and possibly tears in the slab.
    Description: Published
    Description: 121-135
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; Seismic monitoring ; Focal mechanisms ; Subduction ; Apennines ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The first comprehensive geochemical data-set of the fluids circulating over a 14,000 km2-wide seismicprone area of the Southern Apennines, Calabria Region (Italy), is presented here. The geochemical investigations were carried out with the twofold aim of constraining the origin and interactions of the circulating fluids and to investigate possible relationships with local faults. Sixty samples of both thermal and cold waters were collected, from which the dissolved gases were extracted. The geochemical features of the water samples display different types and degrees of water–rock interactions, irrespective of the outlet temperature. The calculated equilibrium temperatures of the thermal waters (60–160 C) and the low heat flow of thewhole study area, are consistent with a heating process due to deep water circulation and rapid upflow through lithospheric structures. The composition of the dissolved gases reveals that crustal-originating gases (N2 and CO2-dominated) feed all the groundwaters. The 3He/4He ratios of the dissolved He, in the range of 0.03–0.22Rac for the thermal waters and 0.05–0.63Rac for the cold waters (Rac = He isotope ratio corrected for atmospheric contamination), are mainly the result of a two-component (radiogenic and atmospheric) mixing, although indications of mantle-derived He are found in some cold waters. As the study area had been hit by 18 of the most destructive earthquakes (magnitude ranging from 5.9 to 7.2) occurring over a 280-a time span (1626–1908) in the Southern Apennines, the reported results on the circulating fluids may represent the reference for a better inside knowledge of the fault-fluid relationships and for the development of long-term geochemical monitoring strategies for the area.
    Description: Published
    Description: 540–554
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Fluids ; Geochemistry ; Faults ; Seismicity ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Miano borehole, 1047 m deep, is located close to the river Parma in the Northern Apennines, Italy. A measuring station has been installed to observe the discharge of fluids continuously since November 2004. The upwelling fluid of this artesian well is a mixture of thermal water and CH4 as main components. In non-seismogenic areas, a relatively constant fluid emission would be expected, perhaps overlaid with long term variations from that kind of deep reservoir over time. However, the continuous record of the fluid emission, in particular the water discharge, the gas flow rate and the water temperature, show periods of stable values interrupted by anomalous periods of fluctuations in the recorded parameters. The anomalous variations of these parameters are of low amplitude in comparison to the total values but significant in their long-term trend. Meteorological effects due to rain and barometric pressure were not detected in recorded data probably due to reservoir depth and relatively high reservoir overpressure. Influences due to the ambient temperature after the discharge were evaluated by statistical analysis. Our results suggest that recorded changes in fluid emission parameters can be interpreted as a mixing process of different fluid components at depth by variations in pore pressure as a result of seismogenic stress variation. Local seismicity was analyzed in comparison to the fluid physico-chemical data. The analysis supports the idea that an influence on fluid transport conditions due to geodynamic processes exists. Water temperature data show frequent anomalies probably connected with possible precursory phenomena of local seismic events.
    Description: Published
    Description: 555–571
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Fluids ; Seismicity ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...